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The role of the environment

Historically, classical SIR dynamics, which do n
explicitly model the environment, have been
very successful at modeling outbreaks.

However, the environment mediates
transmission for many pathogens, which can
Impact dynamics. This occurs in a variety of
media: water, air, food, fomites, etc.




The role of the environment

Mitigation often uses environmental
Interventions: water treatment, hanavashing,
surfacedecontaminationgtc.

Explicitly modeling the environment allows to
considerenvironmental interventions, pathogen
persistence and transport, and the variability of
pathogen dose.




Framework

EITS (Li, 2009) and SIWR (Tien and Earn, 201
are two models that explicitly considers the rol
of the environment.
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Framework

We need to model the relationship between th
number of pathogens someone is exposed to
and the corresponding probability of infection

dosecresponse relationship needed
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Doseresponse relationship

The probability of becoming infected may not be
linear with pathogen dose.

Categoriesof DR
functions

A Biologically derived:
exponential exact beta
Poisson

A Mathematically convenient:
Hill functions]inearr,
approximate BetdPoisson .
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State of the field

The field of quantitative microbial risk
assessment (QMRA) has developed muc
the experimental dosgresponse

literature.

Theoretical work for ODE transmission
models has been agnostic to functional
form.

Implications of the choice of doge
response functional form have not
previously been described.




Example:Cryptosporidium

A Cryptosporidiunis a genus of parasitic protozoa that cause
gastrointestinal illnessc(yptosporidosis

A The spore form (oocyst) is environmentally hardy and resists
chlorine disinfection.




Example:Cryptosporidium

A Doseresponse data is available for the lowa strairCof
parvumin Dupontet al. 1995 (NEJM).

A We fit six dos@esponse

=7 functions to this data.
£ 3- A'We use the functions in an
Eao EITS model (with exposed
> compartment) parameterized
2° | to loosely represent
2 5 Qyptosporidium
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Example:Cryptosporidium
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Example:Cryptosporidium
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What appears to be good agreement Sumipgrgrgays

In doseresponse functions creates
dramatically different dynamics!




Example:Cryptosporidium

AWhy are medium and high dose data so
uninformative for disease dynamics?




Example:Cryptosporidium

AWhy are medium and high dose data so
uninformative for disease dynamics?

AThere is significant spread in the lal@se
regime, where the dynamics are actually

happening 3
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This Is a problem

Experimental data is weliit by many dose
response functions, but these all give very
different dynamics.

Dynamics are controlled by the leslose regime,
but we have littleto-no experimental data there.




Is this modeling approach futile?




Is this modeling approach futile?

ANot necessarily!




Is this modeling approach futile?

Not necessarily!

The previous example assumes that we
know all of the other parameters, like
shedding and pickip rate, but this Is
unrealistic.

We can manage multiple sources of
uncertainty with identifiability analysis,
and environmental monitoring can provide
additional information.
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Percent infected

Fitting to data
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Different dose response models can fit the data equally well.




Percent infected

Fitting to data
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But the different models predict different pathogen
concentrations.
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Infectivity and shedding

The lowdose infectivity and the shedding
rate can tradeoff (i.e. are in the same

identiflable combination) to give the same
case data.

AFewer, highly infectious pathogens
AMore, less infectious pathogens




Infectivity and shedding

The lowdose infectivity and the shedding
rate can tradeoff (i.e. are in the same

identiflable combination) to give the same
case data.

AFewer, highly infectious pathogens
AMore, less infectious pathogens

Observing the concentration of pathogens
In the environment could point us to the
right place on the continuum.
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Percent infected

Fitting to data
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Milwaukee Cryptosporidium

outbreak
LY al NOK 2F MdpdpoX 2y S
treatment plants malfunctioned.

Cases of watery diarrhea began shortly
thereatfter.

Cryptosporidiunmvas isolate from stool samples.
Approximately 400,000 people were affected.

Turbidity was recorded dally, but only two water
samples were tested faCryptosporidium
concentration.




Milwaukee QOutbreak
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AHere, we use turbidity data as a proxy for exposure to
the pathogen compartment, and fit the model to the
case data.




Milwaukee QOutbreak
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AWe canestimate,under reasonabl@ssumptionf
water consumption rateghat the infectivity was an
order of magnitudegreater than the lowa strain dz.
parvum much closer to the TAMU strain.




Milwaukee QOutbreak
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A Environmental monitoring can help us estimate
Infectivity from data, instead of being forced to assume
an infectivity from a dosgresponse form.




Final thoughts

Most doseresponse data is in the middle and
high dose regime, but it is the low dose regime
that governs dynamics.

Constraining functions at higher doses does not
satisfactorily constrain behavior at legloses.

[ G GA &GN Ao SAayf & 2
that should be taken into account. Biological
mechanism and realism of the leslose regime
should be primary.




Final thoughts

Incorporating the environment into models:

Abetter understanding of the role and importance
of underlying environmental processes.

Can assegsotential interventions:

Amore effectiveintervention desigrand allocation
of resources

Significant challenges remain.
ALow-dose regime of doseesponse functions




Thank you!
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