"Typhoid Control and Elimination Efforts in Samoa in the Shadow of COVID-19"

Samoa Typhoid Fever Control Program

Robert E Thomsen, Eric Ekeroma Take K Naseri, Susana Nimarota Brown, Siaosi Tupua, Va'a Witness, Michelle Sialeipata, Savitra Rambocus, Sachin Desai, Jane Han, Glen Fatupaito, **Michael Sikorski, Myron (Mike) M Levine**

Collaborators: Roy Robins-Browne, Benjamin P Howden, Susan A Ballard, Jillian Gauld, John Crump, Krishna Mohan

Samoa Expanded Program on Immunization (EPI) Teuila Pati

BMGF: Duncan Steele, Kirsten Vannice, Jessica Long, Supriya Kumar,

Shauna Metschke, Anita Zaidi

Epidemiological Model of Typhoid Fever and its Use in the Planning of Antityphoid Immunization and Sanitation Programmes

B. CVJETANOVIĆ, B. GRAB & K. UEMURA

Bull. Wld. Hlth Org. 1971; 45:53-75

Used demographic and disease burden data from Samoa (1960s) for the model to predict the impact from use of vaccine and sanitation interventions.

Population: ~150,000;

Annual crude typhoid incidence: 72/100,000 *Predicted that <u>high coverage</u> with an effective vaccine would have a strong impact* Samoa – MM Levine WHO typhoid consultancy, 2013

- In 2012, the Samoan gov't became deeply concerned about endemic typhoid
- 2013 Gov't of Samoa & WHO invited MM Levine to Samoa as a WHO Consultant to design a Samoa Typhoid Fever Control Program
- A plan for a Samoa Typhoid Fever Control Program was crafted.
- Initial external funding came from the BMGF

3 Phases of the Samoa Typhoid Fever Control Program

- Preparatory Phase (~24 months)
 - Strengthen clinical microbiology
 - Create epidemiologic investigation capability
- Original Attack Phase Plan (~3 years)
 - Mass vaccination with Typbar-TCV of all Samoans 1-45 yrs of age
 - Routine toddler vaccination (Typbar-TCV, age 12 mos)
 - Ty21a live oral vaccine for persons > 45 years of age
- Consolidation Phase (3-5 yrs)
 - Enhanced surveillance for residual cases
 - Environmental microbiology to detect S. Typhi in wastewater & sewage
 - Intensive search to find all chronic carriers
 - Rx of chronic carriers (Samoan strains are ciprofloxacin-sensitive)

Samoa Typhoid Epidemiologic SWAT Team activities

Expeditiously visit household (or school or workplace) of every confirmed typhoid case

- Epidemiologic investigation, questionnaire
- Determine water source & sanitation facility
- 3 stool cultures from all contacts
- Detect subclinical acute & chronic infections
- Serum from all adult contacts for **Vi serology**
- **RUQ ultrasound of adult contacts** to find gallstones using hand-held POCUS device
- Place Moore swabs in septic tank (or latrines) and in intakes of untreated piped river water
- MDU performs whole genome sequencing of S. Typhi isolates within 3 weeks

Typhoid in Samoa by Island and Region

Typhoid incidence is low among young children < 5 years, increases steadily from ages 5-24 yrs, peaks in ages 25-29 yrs, and then declines.

8

Rationale for vaccination against typhoid in Samoa

Even if a remediable mode of amplified transmission cannot be detected in Samoa, the susceptibility of Samoans to typhoid fever can be greatly diminished by the use of vaccines: Vi-TT for all Samoans age 1 to 45 yrs Vi-TT for all toddlers age 12 mos

Ty21a live oral vaccine for persons age > 45 years (doesn't stimulate Vi antibodies)

Total blood culture-confirmed typhoid fever cases (all ages) by 2-month intervals, on Upolu, January 2018 through April 2023

Definitions of CONTROL and ELIMINATION of TF in Samoa

- **CONTROL** <5 autochthonous cases/10⁵/yr
 - Initially in priority target age groups (0-19 yrs; 20-45 yrs)
 - -Ultimately in all ages (including >45 years)
- ELIMINATION 0 autochthonous cases/10⁵/yr
 - Systematic search for chronic typhoid carriers in
 Samoans >45 years
 - RUQ POCUS, stool cultures, Vi serology
 - Rx with 4 wks of oral ciprofloxacin or 2 weeks of i.v. ampicillin
 - Monitor <u>all</u> chronic carriers annually; health education

Annual Total Typhoid Cases among Upolu Residents, by Age Group and Year

	All ages		0-4 yrs		5-19 yrs		20-45 yrs		>45 yrs	
Year	Cases	Inc/10 ⁵	Cases	Inc/10 ⁵	Cases	Inc/10 ⁵	Cases	Inc/10 ⁵	Cases	Inc/10 ⁵
2018	114	73.1	6	28.8	44	83.0	49	98.4	15	46.7
2019	103	65.5	9	42.8	39	72.9	39	77.6	16	49.4
2020	50	31.5	7	33.0	18	33.3	19	37.4	6	18.3
2021	34	21.2	3	14.0	13	23.8	15	29.3	3	9.1
2022	22	13.6	0	0	7	12.7	13	25.1	2	6.0
2023*	4	2.4	0	0	0	0	4	7.7	0	0

* January through April

What S. Typhi genotypes are in Samoa?

How do Samoan S. Typhi genotypes compare globally?

20	Genotype	Samoa	Non-Samoa
	3.5.4	285	1*
	3.5.3	7	1*
	4.1	11	137
	2.2.1	1	19
	2.3.2	1	49
	3.5	1	92
	Others	0	4,635
Genotype 3.5.3 is	Subtotals	306	4,934
genotype 3.5.4	Total N	5	5240
	*Δustralian isoli	ations of unkno	wn travel origin

UIINIOVVII

Genotypes 3.5.4/3.5.3 are essentially exclusive to Samoa

306 Samoan *S.* Typhi from 1983-2020 versus 4,934 global S. Typhi

Maximum-likelihood phylogeny

Sub-lineages for epidemiologic analysis

186 Samoan *S.* Typhi from 2018-2020

- Molecular subtyping by genotype and sub-lineage
- Hypothesis: similar isolates represent a network or chain of infection via a common vehicle and/or source

WGS and epidemiologic linkages of infections

- Epidemiologic linkages, e.g.
 - Familial contact; same or different household
 - Known recent gathering
 - Repeat positive culture after 1 month
- Dataset: 12 examples of epidemiologic linkages (EL) and 3 repeat positive (RP) cultures from same individual ~1 month apart

Epidemiologic linkages are supported by SNP cutoffs

Sikorski et al., PLoS Negl Trop Dis. 2022 Oct 17;16(10):e0010348. PMID: 36251704

Phylogeny supports 10/12 epidemiologic linkages with 0-3 SNP differences

EL5: different sub-lineages, 28 SNPs EL11: same sub-lineage, 9 SNPs

SNP cutoff is not defined for S. Typhi

- ≤10 for *S. enterica* (Burnsed, 2019)
- ≤4 for *S*. Typhi (Schürch, 2018)

1-3 SNPs separate repeat positives cultures from same individual ~1 month apart

Genomic epidemiology during Consolidation Phase

- Unique genotypes (3.5.4/3.5.3) permit monitoring for importation
- Validated WGS framework and SNP typing to compare relatedness:

Isolate Source*	Epidemiologic Tool
Sparse cases	-Blood culture surveillance (central and peripheral)
Asymptomatic shedders ("carriers")	-Household "SWAT team" investigations -Village-level POCUS surveys for carriers
Environment	-Moore swabs in septic tanks, sewers, and waterways

*Culture-based methods required

A sunset on typhoid in Samoa? Stay tuned...