Publications
Institute for Disease Modeling (IDM) researchers share new ideas, insights, code, and guidance in open access journal publications to contribute to the global health community. Explore recent publications below, searching or filtering to focus on particular research areas.
Preliminary COVID-19 research reports that we shared publicly but have not been published in a peer-reviewed journal are available at COVID reports.
Read Abstract
Much of the world’s population had already been infected with COVID-19 by the time the Omicron variant emerged at the end of 2021, but the scale of the Omicron wave was larger than any that had come before or has happened since, and it left a global imprinting of immunity that changed the COVID-19 landscape. In this study, we simulate a South African population and demonstrate how population-level vaccine effectiveness and efficiency changed over the course of the first 2 years of the pandemic. We then introduce three hypothetical variants and evaluate the impact of vaccines with different properties. We find that variant-chasing vaccines have a narrow window of dominating pre-existing vaccines but that a variant-chasing vaccine strategy may have global utility, depending on the rate of spread from setting to setting. Next-generation vaccines might be able to overcome uncertainty in pace and degree of viral evolution.
Read Abstract
Vaccines against the SARS-CoV-2 virus were developed in record time, but their distribution has been highly unequal. With demand saturating in high-income countries, many low- and middle-income countries (LMIC) finally have an opportunity to acquire COVID-19 vaccines. But the pandemic has taken its toll, and a majority of LMIC populations have partial immunity to COVID-19 disease due primarily to viral infection. This existing immunity, combined with resource limitations, raises the question of how LMICs should prioritize COVID-19 vaccines relative to other competing health priorities. We modify an established computational model, Covasim, to address these questions in four diverse country-like settings under a variety of viral evolution, vaccine delivery, and novel immunity scenarios. Under continued Omicron-like viral evolution and mid-level immunity assumptions, results show that COVID-19 vaccines could avert up to 2 deaths per 1,000 doses if administered to high-risk (60+) populations as prime+boost or annual boosting campaigns. Similar immunization efforts reaching healthy children and adults would avert less than 0.1 deaths per 1,000 doses. Together, these modeling results can help to support normative guidelines and programmatic decision making towards objectively maximizing population health.
Read Abstract
The Omicron wave has left a global imprinting of immunity which changes the COVID landscape. In this study, we simulate six hypothetical variants emerging over the next year and evaluate the impact of existing and improved vaccines. We base our study on South Africa’s infection- and vaccination-derived immunity. Our findings illustrate that variant-chasing vaccines will only add value above existing vaccines in the setting where a variant emerges if we can shorten the window between variant introduction and vaccine deployment to under three weeks, an impossible time-frame without significant NPI use. This strategy may have global utility, depending on the rate of spread from setting to setting. Broadly neutralizing and durable next-generation vaccines could avert over three-times as many deaths from an immune-evading variant compared to existing vaccines. Our results suggest it is crucial to develop next-generation vaccines and redress inequities in vaccine distribution to tackle future emerging variants.
Read Abstract
Objectives To assess the risk of sustained community transmission of SARS-CoV-2/COVID-19 in Queensland (Australia) in the presence of high-transmission variants of the virus.
Design We used an agent-based model Covasim and the demographics, policies, and interventions implemented in the state. Using the calibrated model we simulated possible epidemic trajectories that could eventuate due to leakage of infected cases with high-transmission variants, during a period of zero community transmission.
Setting Model calibration covered the first-wave period from early March 2020 to May 2020. Predicted epidemic trajectories were simulated from early February 2021 to late March 2021.
Main outcomes A calibrated model of COVID-19 epidemiology in Queensland; the conditions that could lead to an outbreak; and how likely that situation is to occur.
Results Simulations showed that one infected agent with the ancestral (A.2.2) variant has a 14% chance of crossing a threshold of sustained community transmission (i.e., > 5 infections per day, more than 3 days in a row), assuming no change in the prevailing preventative and counteracting policies. However, one agent carrying a more infectious variant (e.g., B.1.1.7) has a 43% chance of crossing the same threshold; a threefold increase. Doubling the average number of daily tests results in a decrease of this probability from 43% to 23%.
Conclusions The introduction of even a small number of people infected with high-transmission variants dramatically increases the probability of sustained community transmission in Queensland.
The known The B.1.1.7 variant that emerged in the UK spreads faster than the ancestral COVID-19 strain of early 2020, with a reported transmissibility between 40%-90% higher. However, the probabilities of developing sustained community transmission in Queensland, which is currently a zero community transmission setting, are unknown.
The new Using an agent-based model, with the levels of testing observed in Queensland during February–March 2021, we found that as few as 3 agents infected with a highly-transmissible variant have an 80% chance of developing sustained community transmission.
The implications Until high vaccine coverage is achieved, a swift implementation of policies and interventions, together with high adherence rates, will be required to minimise the probability of sustained community transmission from high-transmission variants.
Read Abstract
We used an agent-based model Covasim to assess the risk of sustained community transmission of SARSCoV-2/COVID-19 in Queensland (Australia) in the presence of high-transmission variants of the virus. The model was calibrated using the demographics, policies, and interventions implemented in the state. Then, using the calibrated model, we simulated possible epidemic trajectories that could eventuate due to leakage of infected cases with high-transmission variants, during a period without recorded cases of locally acquired infections, known in Australian settings as “zero community transmission”. We also examined how the threat of new variants reduces given a range of vaccination levels. Specifically, the model calibration covered the first-wave period from early March 2020 to May 2020. Predicted epidemic trajectories were simulated from early February 2021 to late March 2021. Our simulations showed that one infected agent with the ancestral (A.2.2) variant has a 14% chance of crossing a threshold of sustained community transmission (SCT) (i.e., > 5 infections per day, more than 3 days in a row), assuming no change in the prevailing preventative and counteracting policies. However, one agent carrying the alpha (B.1.1.7) variant has a 43% chance of crossing the same threshold; a threefold increase with respect to the ancestral strain; while, one agent carrying the delta (B.1.617.2) variant has a 60% chance of the same threshold, a fourfold increase with respect to the ancestral strain. The delta variant is 50% more likely to trigger SCT than the alpha variant. Doubling the average number of daily tests from ∼ 6,000 to 12,000 results in a decrease of this SCT probability from 43 to 33% for the alpha variant. However, if the delta variant is circulating we would need an average of 100,000 daily tests to achieve a similar decrease in SCT risk. Further, achieving a full-vaccination coverage of 70% of the adult population, with a vaccine with 70% effectiveness against infection, would decrease the probability of SCT from a single seed of alpha from 43 to 20%, on par with the ancestral strain in a naive population. In contrast, for the same vaccine coverage and same effectiveness, the probability of SCT from a single seed of delta would decrease from 62 to 48%, a risk slightly above the alpha variant in a naive population. Our results demonstrate that the introduction of even a small number of people infected with high-transmission variants dramatically increases the probability of sustained community transmission in Queensland. Until very high vaccine coverage is achieved, a swift implementation of policies and interventions, together with high quarantine adherence rates, will be required to minimise the probability of sustained community transmission.
Read Abstract
Background
In settings with zero community transmission, any new SARS-CoV-2 outbreaks are likely to be the result of random incursions. The level of restrictions in place at the time of the incursion is likely to considerably affect possible outbreak trajectories, but the probability that a large outbreak eventuates is not known.
Methods
We used an agent-based model to investigate the relationship between ongoing restrictions and behavioural factors, and the probability of an incursion causing an outbreak and the resulting growth rate. We applied our model to the state of Victoria, Australia, which has reached zero community transmission as of November 2020.
Results
We found that a future incursion has a 45% probability of causing an outbreak (defined as a 7-day average of > 5 new cases per day within 60 days) if no restrictions were in place, decreasing to 23% with a mandatory masks policy, density restrictions on venues such as restaurants, and if employees worked from home where possible. A drop in community symptomatic testing rates was associated with up to a 10-percentage point increase in outbreak probability, highlighting the importance of maintaining high testing rates as part of a suppression strategy.
Conclusions
Because the chance of an incursion occurring is closely related to border controls, outbreak risk management strategies require an integrated approaching spanning border controls, ongoing restrictions, and plans for response. Each individual restriction or control strategy reduces the risk of an outbreak. They can be traded off against each other, but if too many are removed there is a danger of accumulating an unsafe level of risk. The outbreak probabilities estimated in this study are of particular relevance in assessing the downstream risks associated with increased international travel.
Read Abstract
Following the resurgence of the COVID-19 epidemic in the UK in late 2020 and the emergence of the alpha (also known as B117) variant of the SARS-CoV-2 virus, a third national lockdown was imposed from January 4, 2021. Following the decline of COVID-19 cases over the remainder of January 2021, the question of when and how to reopen schools became an increasingly pressing one in early 2021. This study models the impact of a partial national lockdown with social distancing measures enacted in communities and workplaces under different strategies of reopening schools from March 8, 2021 and compares it to the impact of continual full national lockdown remaining until April 19, 2021. We used our previously published agent-based model, Covasim, to model the emergence of the alpha variant over September 1, 2020 to January 31, 2021 in presence of Test, Trace and Isolate (TTI) strategies. We extended the model to incorporate the impacts of the roll-out of a two-dose vaccine against COVID-19, with 200,000 daily vaccine doses prioritised by age starting with people 75 years or older, assuming vaccination offers a 95% reduction in disease acquisition risk and a 30% reduction in transmission risk. We used the model, calibrated until January 25, 2021, to simulate the impact of a full national lockdown (FNL) with schools closed until April 19, 2021 versus four different partial national lockdown (PNL) scenarios with different elements of schooling open: 1) staggered PNL with primary schools and exam-entry years (years 11 and 13) returning on March 8, 2021 and the rest of the schools years on March 15, 2020; 2) full-return PNL with both primary and secondary schools returning on March 8, 2021; 3) primary-only PNL with primary schools and exam critical years (years 11 and 13) going back only on March 8, 2021 with the rest of the secondary schools back on April 19, 2021 and 4) part-rota PNL with both primary and secondary schools returning on March 8, 2021 with primary schools remaining open continuously but secondary schools on a two-weekly rota-system with years alternating between a fortnight of face-to-face and remote learning until April 19, 2021. Across all scenarios, we projected the number of new daily cases, cumulative deaths and effective reproduction number R until April 30, 2021. Our calibration across different scenarios is consistent with alpha variant being around 60% more transmissible than the wild type. We find that strict social distancing measures, i.e. national lockdowns, were essential in containing the spread of the virus and controlling hospitalisations and deaths during January and February 2021. We estimated that a national lockdown over January and February 2021 would reduce the number of cases by early March to levels similar to those seen in October 2020, with R also falling and remaining below 1 over this period. We estimated that infections would start to increase when schools reopened, but found that if other parts of society remain closed, this resurgence would not be sufficient to bring R above 1. Reopening primary schools and exam critical years only or having primary schools open continuously with secondary schools on rotas was estimated to lead to lower increases in cases and R than if all schools opened. Without an increase in vaccination above the levels seen in January and February, we estimate that R could have increased above 1 following the reopening of society, simulated here from April 19, 2021. Our findings suggest that stringent measures were integral in mitigating the increase in cases and bringing R below 1 over January and February 2021. We found that it was plausible that a PNL with schools partially open from March 8, 2021 and the rest of the society remaining closed until April 19, 2021 would keep R below 1, with some increase evident in infections compared to continual FNL until April 19, 2021. Reopening society in mid-April, without an increase in vaccination levels, could push R above 1 and
Read Abstract
Following the resurgence of the COVID-19 epidemic in the UK in late 2020 and the emergence of the alpha (also known as B117) variant of the SARS-CoV-2 virus, a third national lockdown was imposed from January 4, 2021. Following the decline of COVID-19 cases over the remainder of January 2021, the question of when and how to reopen schools became an increasingly pressing one in early 2021. This study models the impact of a partial national lockdown with social distancing measures enacted in communities and workplaces under different strategies of reopening schools from March 8, 2021 and compares it to the impact of continual full national lockdown remaining until April 19, 2021. We used our previously published agent-based model, Covasim, to model the emergence of the alpha variant over September 1, 2020 to January 31, 2021 in presence of Test, Trace and Isolate (TTI) strategies. We extended the model to incorporate the impacts of the roll-out of a two-dose vaccine against COVID-19, with 200,000 daily vaccine doses prioritised by age starting with people 75 years or older, assuming vaccination offers a 95% reduction in disease acquisition risk and a 30% reduction in transmission risk. We used the model, calibrated until January 25, 2021, to simulate the impact of a full national lockdown (FNL) with schools closed until April 19, 2021 versus four different partial national lockdown (PNL) scenarios with different elements of schooling open: 1) staggered PNL with primary schools and exam-entry years (years 11 and 13) returning on March 8, 2021 and the rest of the schools years on March 15, 2020; 2) full-return PNL with both primary and secondary schools returning on March 8, 2021; 3) primary-only PNL with primary schools and exam critical years (years 11 and 13) going back only on March 8, 2021 with the rest of the secondary schools back on April 19, 2021 and 4) part-rota PNL with both primary and secondary schools returning on March 8, 2021 with primary schools remaining open continuously but secondary schools on a two-weekly rota-system with years alternating between a fortnight of face-to-face and remote learning until April 19, 2021. Across all scenarios, we projected the number of new daily cases, cumulative deaths and effective reproduction number R until April 30, 2021. Our calibration across different scenarios is consistent with alpha variant being around 60% more transmissible than the wild type. We find that strict social distancing measures, i.e. national lockdowns, were essential in containing the spread of the virus and controlling hospitalisations and deaths during January and February 2021. We estimated that a national lockdown over January and February 2021 would reduce the number of cases by early March to levels similar to those seen in October 2020, with R also falling and remaining below 1 over this period. We estimated that infections would start to increase when schools reopened, but found that if other parts of society remain closed, this resurgence would not be sufficient to bring R above 1. Reopening primary schools and exam critical years only or having primary schools open continuously with secondary schools on rotas was estimated to lead to lower increases in cases and R than if all schools opened. Without an increase in vaccination above the levels seen in January and February, we estimate that R could have increased above 1 following the reopening of society, simulated here from April 19, 2021. Our findings suggest that stringent measures were integral in mitigating the increase in cases and bringing R below 1 over January and February 2021. We found that it was plausible that a PNL with schools partially open from March 8, 2021 and the rest of the society remaining closed until April 19, 2021 would keep R below 1, with some increase evident in infections compared to continual FNL until April 19, 2021. Reopening society in mid-April, without an increase in vaccination levels, could push R above 1 and
Predicting the unpredictable: how fluid COVID-19 policies and restrictions challenge model forecasts
Read Abstract
To retrospectively assess the accuracy of a mathematical modelling study that projected the rate of COVID-19 diagnoses for 72 locations worldwide in 2021, and to identify predictors of model accuracy. Methods Between June and August 2020, an agent-based model was used to project rates of COVID-19 infection incidence and cases diagnosed as positive from 15 September to 31 October 2020 for 72 geographic settings. Five scenarios were modelled: a baseline scenario where no future changes were made to existing restrictions, and four scenarios representing small or moderate changes in restrictions at two intervals. Post hoc, upper and lower bounds for number of diagnosed Covid-19 cases were compared with actual data collected during the prediction window. A regression analysis with 17 covariates was performed to determine correlates of accurate projections. Results The actual data fell within the lower and upper bounds in 27 settings and out of bounds in 45 settings. The only statistically significant predictor of actual data within the predicted bounds was correct assumptions about future policy changes (OR = 15.04; 95%CI 2.20-208.70; p=0.016). Conclusions For this study, the accuracy of COVID-19 model projections was dependent on whether assumptions about future policies are correct. Frequent changes in restrictions implemented by governments, which the modelling team was not always able to predict, in part explains why the majority of model projections were inaccurate compared with actual outcomes and supports revision of projections when policies are changed as well as the importance of policy experts collaborating on modelling projects.
Read Abstract
Objectives: The early stages of the COVID-19 pandemic illustrated that SARS-CoV-2, the virus that causes the disease, has the potential to spread exponentially. Therefore, as long as a substantial proportion of the population remains susceptible to infection, the potential for new epidemic waves persists even in settings with low numbers of active COVID-19 infections, unless sufficient countermeasures are in place. We aim to quantify vulnerability to resurgences in COVID-19 transmission under variations in the levels of testing, tracing and mask usage.
Setting: The Australian state of New South Wales (NSW), a setting with prolonged low transmission, high mobility, non-universal mask usage and a well-functioning test-and-trace system.
Participants: None (simulation study).
Results: We find that the relative impact of masks is greatest when testing and tracing rates are lower and vice versa. Scenarios with very high testing rates (90% of people with symptoms, plus 90% of people with a known history of contact with a confirmed case) were estimated to lead to a robustly controlled epidemic. However, across comparable levels of mask uptake and contact tracing, the number of infections over this period was projected to be 2–3 times higher if the testing rate was 80% instead of 90%, 8–12 times higher if the testing rate was 65% or 30–50 times higher with a 50% testing rate. In reality, NSW diagnosed 254 locally acquired cases over this period, an outcome that had a moderate probability in the model (10%–18%) assuming low mask uptake (0%–25%), even in the presence of extremely high testing (90%) and near-perfect community contact tracing (75%–100%), and a considerably higher probability if testing or tracing were at lower levels.
Conclusions: Our work suggests that testing, tracing and masks can all be effective means of controlling transmission. A multifaceted strategy that combines all three, alongside continued hygiene and distancing protocols, is likely to be the most robust means of controlling transmission of SARS-CoV-2.
