

Mobility and Malaria in Madagascar Amy Wesolowski Department of Ecology and Evolutionary Biology

DISEASE DYNAMICS

Introduction

Quantifying human mobility patterns

Modeling sources and sinks of malaria parasites in Madagascar

Human travel can introduce pathogens into susceptible populations

Human travel can introduce pathogens into susceptible populations

Malaria resurgence

Why do we care about human travel for malaria control? Malaria resurgence Targeted interventions

"Reappearance of new infections in significant numbers after malaria has subsided owing to the measured applied to reduce or interrupt its transmission" Bruce-Chwatt, 1972

Why do we care about human travel for malaria control? Malaria resurgence Targeted interventions

Spain 1936-1943 In

Russia 1960-Afghanistan 1970-1978 Azerbaijan 1990-1996 Turkey1990-1994 Iran 1991-1999 Liberia 1948-1951 Swaziland 1971-1996 F Mauritius 1975-1982 Ethiopia 1980-1991 Sudan 1981-1993 Uganda 1990

India 1965-1976 Myanmar 1968-2008 Thailand 1970-1981 Bangladesh 1971-1994 Vietnam 1979-1991 Pakistan 1980-1992 Sri Lanka 1982-1987 French Guiana 1975-1990 Peru 1981-1998 Indonesia 1963-1973 Malaysia 1967-1978

Malaria resurgence

Malaria resurgence

Malaria resurgence

How do we measure human travel patterns?

FIG. 1 MIGRANT LABOUR MOVEMENTS AND AREAS OCCUPIED BY NOMADIC PASTORALISTS IN AFRICA SOUTH OF THE SAHARA

Prothero (1961) WHO Report

	2 A_NU 🛛 B_N	U 🖞 CELL_ID 🛛 🖞 LOCATIO	N 🖁 TIER3_NAME	MAIN_GROUP	🖞 CALLI 🖞 CA	ALLI 🖁 EVENT 🖁	EVENT 🖞 TWIN	I 🖞 DESTINATI.	🖁 COST	. 🖞 PRODUCT
423	20923 23214	(null) Norge	SMS i Norge	SMS	(null) 24201	13 15.02.2011	(null) (null)	(null)	(null)	04720
424	20923 23214	(null) Norge	SMS i Norge	SMS	(null) 24201	13 15.02.2011	(null) (null)	(null)	(null)	04720
425	20923 23214	(null) Norge	SMS i Norge	SMS	(null) 24201	13 15.02.2011	(null) (null)	(null)	(null)	04720
426	24115 46230	242012040141314 Utland	NR – Utgående tale	Tale	35526 24205	50 15.02.2011	(null) (null)	NOR	Z-NR-MOC	(null)
427	46240 30623	242011170104261 Norge	Til fastnett	Tale	12164 24201	10 15.02.2011	(null) (null)	(null)	F-FAST	04720
428	46240 24002	242012070143948 Norge	Til operatører hos Netcom	Tale	12164 24201	10 15.02.2011	(null) (null)	(null)	X-NETW	04720
429	4624030598.	242012070143948 Norge	Til fastnett	Tale	12164 24201	10 15.02.2011	(null) (null)	(null)	F-FAST	04720
430	46240 24002	242012070143948 Norge	Til operatører hos Netcom	Tale	12164 24201	10 15.02.2011	(null) (null)	(null)	X-NETW	04720
431	46240 24002		Til operatører hos Netcom	Tale	12164 24201	10 15.02.2011	(null) (null)	(null)	X-NETW	04720
432	46240 11168		Til fastnett	Tale	12164 24201	10 15.02.2011	(null) (null)	(null)	F-FAST	04720
433	48311 45754	. A number	Viderekobling i Telenors Nett	: Tale	(null) 24201	10 15.02.2011	(null) (null)	NOR	M-MOBI	04577
434	48311 (nu	.1	Internett	Internett	(null) 24201	1014.02.2011	45259 (null)	(null)	T3-V0T	04577
435	48311 (nu)	d.,, .	Internett	Internett	(null) 24201	1014.02.2011	297421 (null)	(null)	T3-V0T	04577
436	48311 (nu	1) (null) Norge	Internett	Internett	(null) 24201	1014.02.2011	468 (null)	(null)	T3-V0T	04577
437	48311 (nu	.1) (null) Norge	Internett	Internett	(null) 24201	10 15.02.2011	7854 (null)	(null)	T3-V0T	04577
438	48311 (nu	.1) (mull) Morge	Internett	Internett	(null) 24201	10 15.02.2011	352 (null)	(null)	T3-V0T	04577
439	48311 (nu)	.1)	ett	Internett	(null) 24201	1014.02.2011	152 (null)	(null)	T3-V0T	04577
440	48311 (nu	.1)	ett	Internett			70509 (null)	(null)	T3-V0T	04577
441	48311 (nu)	.1) B NUMD	er ett	Internett			144 (null)	(null)	T3-V0T	04577
442	48311 (nu	.1)	ett	Internett	Т		3711 (null)	(null)	T3-V0T	04577
443	48311 (nu)	.1)	ett	Internett		yhe	3202 (null)	(null)	T3-V0T	04577
444	48311 (nu	.1) (null) Norge	Internett	Internett			152 (null)	(null)	T3-V0T	04577
445	45047 49639	(null) Norge	SMS i Norge	SMS	(nu11) 24201	10 15.02.2011	(null) (null)	(null)	(null)	04747
446	22637 (nu)	.1) (null) Utland	GPRS i utlandet	Internett	(null) 23820	0915.02.2011	341 (null)	(null)	T3-V0T	(null)
447	46835 23959	242012080150195 Norge	NR - Utgående SMS	SMS	35821 24205	5014.02.2011	(null) (null)	(null)	Z-MO	(null)
448	23170 (nu)	1) 242011450118026 Utland	NR - Inngående tale/data/fax	Tale	35492 24205	5914.02.2011	(null) (null)	(null)	Z-MTC	(null)
449	23698 (nu)	1) 242011560112573 Utland	NR - Inngående tale/data/fax	Tale	35489 24205	50 15.02 2011	(null) (null)	(null)	Z-MTC	(null)
450	29651 (nu)	.1) (null) Nor		Internett	(null) 24205	5914.02.2011	28754 (null)	(null)	T3-V0T	(null)
451	48376 23959.	(null) Nor		SMS	35536 24205	59 15.02.2011	í.)-TA2	(null)
1792	23825 36243	0 Nor		Tale	(null) (nu	ull) 15.02.2011	^{(m} Dat	aand	AST (04008
1793	23825 45754	0 Nor	CLLLID enors Nett	Tale	(null) (nu	ull) 15.02.2011	_{(m} Dat	e anu	OBI (04008
1794	130055 45558	(null) Nor		SMS	(null) (nu	ull) 15.02.2011	(m T	ime	11) (02092
1795	47589 45850	(null) Norge	AND I NOLYC	SMS	(null) 242013	3 14.02.2011	(m		11) (04140
1796	47589 24063	(null) Norge	SMS i Norge	SMS	(null) 242013	3 14.02.2011	(nuii) (nuii)	(nurr)	(null) (04140
1797	47589 24063	(null) Norge	SMS i Norge	SMS	(null) 242013	3 14.02.2011	(null) (null)	(null)	(null) 0	04140
1798	47589 49864	(null) Norge	SMS i Norge	SMS	(null) 242013	3 15.02.2011	(null) (null)	(null)	(null) 0	04140
1799	47589 45797	(null) Norge	SMS i Norge	SMS	(null) 242013	3 15.02.2011	(null) (null)	(null)	(null) 0	04140
1800	47589 45006	(null) Norge	SMS i Norge	SMS	(null) 242013	3 15.02.2011	(null) (null)	(null)	(null) (04140
1801	47589 45872	(null) Norge	Internt til kollega - SMS	SMS	(null) 242013	3 15.02.2011	(null) (null)	(null)	(null) (04140
1802	46633 47516	242015040147145 Utland	NR - Utgående tale	Tale	35629 242050	014.02.2011	(null) (null)	NOR	Z-NR-MOC	(null)
1803	22600 45001	(null) Norge	NR - Inngående SMS	SMS	35486 242059	914.02.2011	(null) (null)	(null)	T3-TA2	(null)
1804	46642 45001	(null) Norge	NR - Inngående SMS	SMS	11808 242050	0 15.02.2011	(null) (null)	(null)	T3-TA2	(null)
1805	46809 49792	(null) Utland	Fri bruk SMS i	SMS	(null) 242013	3 14.02.2011	(null) (null)	(null)	(null) (04712
1806	46809 20022	(null) Utland	Fri bruk SMS i	SMS	(null) 242013	3 14.02.2011	(null) (null)	(null)	(null) 0	04712
1807	46809 20022	(null) Utland	Fri bruk SMS i	SMS	(null) 242013	3 14.02.2011	(null) (null)	(null)	(null) 0	04712

Measuring mobility patterns Mobile phone data A Day 2 З 4 5 Tower Location Day per day per day 2 ····▶ Trips 3 ····▶ 4▶ 5….►

Incorporating mobility into transmission models

Lloyd-Smith

Lloyd-Smith

Lloyd-Smith

How can we extend this framework for malaria?

How can we extend this framework for malaria?

Can we identify sources and sinks?

Upper bound: Given prevalence (force of infection) and mobility estimates where are importations most likely?

Can we identify sources and sinks?

Lower bound: Given cases reported in a location where local transmission is unlikely where are the likely sources?

Can we identify sources and sinks?

Upper bound: Given prevalence (force of infection) and mobility estimates where are importations most likely?

[Actual importations]

Lower bound: Given cases reported in a location where local transmission is unlikely where are the likely sources?
Can we identify sources and sinks?

Upper bound: Given prevalence (force of infection) and mobility estimates where are importations most likely?

[Actual importations]

Lower bound: Given cases reported in a location where local transmission is unlikely where are the likely sources?

Felana Ihantamalala

Malaria in Madagascar

Jean Maurice Rakotondramanga

Felana Ihantamalala

Jean Maurice Rakotondramanga

Felana Ihantamalala

Malaria in Madagascar

Jean Maurice Rakotondramanga

June 15, 1907.]

THE JOURNAL OF TROPICAL MEDICINE AND HYGIENE.

island. In the low country malaria has always been endemic, the index of infection in the native population equalling that of West Africa. Tamatave, the principal seaport and chief emporium for the trade of the island, has been a byword for sanitary maladministration and unhealthiness. Of a total number of 14,850 French soldiers who formed the military expedition of 1895, and who landed at that port, no fewer than 4,498 lost their lives. Seventy-two per cent. of this appalling mortality was due to malarial fever-less than 1 per cent. of all deaths being the result of wounds. On the other hand, the uplands, until recently, have been exceptionally exempt from endemic disease. Before 1904, Antananarivo, the capital, and the surrounding country, were practically free from malaria. Fever was infrequent and of a mild type, malarial parasites being seldom seen except in those Europeans who had been living on the coast, or who had come from other colonies. The natives, and especially the Hovas, were a healthy and prolific people. In 1902, out of a total admission list of 1,433 to the native wards of the Government hospitals of the interior, there were only eighty fatalities from all causes. In that year also the records show that of 4,430 European sick, treated in the same hospitals, only forty-six died. It is therefore apparent that, whatever the prevalent diseases were, they were not of a malignant type.

But, coincidently with the construction of a railway from Tamatave towards Antananarivo, of an important canal in the same direction, and of improvements to the high roads to the capital, a change took place. Of the railway, 148 kilometres—to the rail-head at

Correspondence.

MALARIA IN MADAGASCAR. To the Editors of the JOURNAL OF TROPICAL MEDICINE AND HYGIENE.

Moramanga—have been made and are already in operation, leaving 122 kilometres still to be traversed by road in carriages and automobiles. The traffic by rail and road is described as enormous. In 1903, the first year of construction, there was an outbreak of malaria in the uplands contiguous to the railway, but, though there were many cases, the fever is described as having been of a benign type. In 1904 there was a further alarming extension and development of the disease; the capital, Antananarivo, became seriously infected, and the type was now that of malignant tertian. In a total population of 40,000, the deaths from malaria, which appear in previous years to have averaged about fifty, rose in 1903 to 137, in 1904 to 277, in 1905 to 688, and for only the first four months of 1906 to no less than 980.

W. CARNEGIE BROWN.

June 15, 1907.]

THE JOURNAL OF TROPICAL MEDICINE AND HYGIENE.

island. In the low country malaria has always been endemic, the index of infection in the native population equalling that of West Africa. Tamatave, the principal seaport and chief emporium for the trade of the island, has been a byword for sanitary maladministration and unhealthiness. Of a total number of 14,850 French soldiers who formed the military expedition of 1895, and who landed at that port, no fewer than 4,498 lost their lives. Seventy-two per cent. of this appalling mortality was due to malarial fever-less than 1 per cent. of all deaths being the result of wounds. On the other hand, the uplands, until recently, have been exceptionally exempt from endemic disease. Before 1904, Antananarivo, the capital, and the surrounding country, were practically free from malaria. Fever was infrequent and of a mild type, malarial parasites being seldom seen except in those Europeans who had been living on the coast, or who had come from other colonies. The natives, and especially the Hovas, were a healthy and prolific people. In 1902, out of a total admission list of 1,433 to the native wards of the Government hospitals of the interior, there were only eighty fatalities from all causes. In that year also the records show that of 4,430 European sick, treated in the same hospitals, only forty-six died. It is therefore apparent that, whatever the prevalent diseases were, they were not of a malignant type.

But, coincidently with the construction of a railway from Tamatave towards Antananarivo, of an important canal in the same direction, and of improvements to the high roads to the capital, a change took place. Of the railway, 148 kilometres—to the tail-head at

Correspondence.

MALARIA IN MADAGASCAR. To the Editors of the JOURNAL OF TROPICAL MEDICINE AND HYGIENE.

Moramanga—have been made and are already in operation, leaving 122 kilometres still to be traversed by road in carriages and automobiles. The traffic by rail and road is described as enormous. In 1903, the first year of construction, there was an outbreak of malaria in the uplands contiguous to the railway, but, though there were many cases, the fever is described as having been of a benign type. In 1904 there was a further alarming extension and development of the disease; the capital, Antananarivo, became seriously infected, and the type was now that of malignant tertian. In a total population of 40,000, the deaths from malaria, which appear in previous years to have averaged about fifty, rose in 1903 to 137, in 1904 to 277, in 1905 to 688, and for only the first four months of 1906 to no less than 980.

W. CARNEGIE BROWN.

June 15, 1907.]

THE JOURNAL OF TROPICAL MEDICINE AND HYGIENE.

island. In the low country malaria has always been endemic, the index of infection in the native population equalling that of West Africa. Tamatave, the principal seaport and chief emporium for the trade of the island, has been a byword for sanitary maladministration and unhealthiness. Of a total number of 14,850 French soldiers who formed the military expedition of 1895, and who landed at that port, no fewer than 4,498 lost their lives. Seventy-two per cent. of this appalling mortality was due to malarial fever-less than 1 per cent. of all deaths being the result of wounds. On the other hand, the uplands, until recently, have been exceptionally exempt from endemic disease. Before 1904, Antananarivo, the capital, and the surrounding country, were practically free from malaria. Fever was infrequent and of a mild type, malarial parasites being seldom seen except in those Europeans who had been living on the coast, or who had come from other colonies. The natives, and especially the Hovas, were a healthy and prolific people. In 1902, out of a total admission list of 1.433 to the native wards of the Government hospitals of the interior, there were only eighty fatalities from all causes. In that year also the records show that of 4,430 European sick, treated in the same hospitals, only forty-six died. It is therefore apparent that, whatever the prevalent diseases were, they were not of a malignant type.

But, coincidently with the construction of a railway from Tamatave towards Antananarivo, of an important canal in the same direction, and of improvements to the high roads to the capital, a change took place. Of the railway, 148 kilometres—to the rail-head at

Correspondence.

MALARIA IN MADAGASCAR. To the Editors of the JOURNAL OF TROPICAL MEDICINE AND HYGIENE.

Moramanga-have been made and are already in operation, leaving 122 kilometres still to be traversed by road in carriages and automobiles. The traffic by rail and road is described as enormous. In 1903, the first year of construction, there was an outbreak of malaria in the uplands contiguous to the railway, but, though there were many cases, the fever is described as having been of a benign type. In 1904 there was a further alarming extension and development of the disease; the capital, Antananarivo, became seriously infected, and the type was now that of malignant tertian. In a total population of 40,000, the deaths from malaria, which appear in previous years to have averaged about fifty, rose in 1903 to 137, in 1904 to 277, in 1905 to 688, and for only the first four months of 1906 to no less than 980.

W. CARNEGIE BROWN.

Volume

Ratio Avg Incoming vs Outgoing Trips

Ratio Avg Incoming vs Outgoing Trips

Coefficient of Variation of Daily Travel to Other Districts

How can we extend this framework for malaria?

How can we extend this framework for malaria?

Sources (emitters) and sinks (receivers) of travel and parasite importation were identified

Based on daily travel and importation values, communes were assigned source and sink ranks

The great sources were communes that emitted a large amount of parasites.

The great sinks were communes that received a large amount of parasites.

Primary Source Primary Sink

Number of Related Sinks

Number of **Related Sinks** 25 20 15 10 ß 0 Neutral **Primary Source** Temporal **Primary Primary** Sink Source **Spatial**

Number of Related Sinks

Number of Related Sinks

Number of Related Sinks

How can we extend this framework for malaria?

Importations in Tana District

Spatial Wallinga-Teunis Method

White et al 2013

Spatial Wallinga-Teunis Method

Spatial Wallinga-Teunis Method

White et al 2013

Spatial Wallinga-Teunis Method

White et al 2013

Tana District

Tana District

Tana District

Sources and sinks of malaria parasites

Tana District

Smallest Source

Sources and sinks of malaria parasites

Tana District

Mobility patterns vary in space, time, and volume.

These differences can impact estimates of sources and sinks of malaria parasites.

However, in many instances there are consistent (spatially and temporally) sources that can be inferred using multiple methods.

Acknowledgements

Collaborators

Princeton University Jess Metcalf Bryan Grenfell Metcalf and Grenfell labs Harvard TH Chan School of Public Health Caroline Buckee University of Southampton Andy Tatem Institut Pasteur Simon Cauchemez Institut Pasteur - Madagascar Felana Ihantamalala Jean-Maurice Rakotondramanga Jean Michel Heraud Christophe Rogier

Funders

NIH - MIDAS Wellcome Trust Sustaining Health James S McDonnell Foundation Burroughs-Wellcome Career Award

> James S. McDonnell Foundation

Thanks!

Malaria in Madagascar

Kesteman et al (2014)

in high transmission >1 case per 1,000

low transmission 0-1 case per 1,000 pop reported falciparum to vivid unestus, An. gambiae, An. arabiensis, An. arensis, An. coustani Q - artesunate-amodiaquine

> 268,597 mi² 226,658 mi² 224,445 mi²

population size madagascar = 23 million

Kesteman et al (2014) texas = 27 million / area slightly bigger

Sources Sinks

Basic framework

Infected individuals from i

$$P(import) = \lambda_j * d * S_i$$

Onward infections?

Susceptible individuals from i

$$P(infect) = \lambda_j * d$$

Interact with infected in j

Mobile phone data can be used to understand human mobility dynamics across a range of pathogens and countries

Malaria in Madagascar

Multiple epidemiological zones Year round, endemic transmission on the East and West Coasts Central Highlands and South have periodic outbreaks **There is little (no) local transmission in the capital district**

Since the French occupation much attention has been rightly devoted to the making of roads and railway, but the natives engaged in this labour have suffered enormously, owing to their contracting malaria in the unhealthy districts in which from time to time they have worked. Many have died, in spite of assiduous treatment by native doctors in the employ of the Government; more, perhaps, have returned to their villages, wrecks from malaria. These are the villages along the rice valleys, where, as I said, mosquitoes abound. The origin of the epidemic is thus fairly easy to conjecture.

The difficulty in dealing with the outbreak is that the ricefields themselves, which are necessary for the growth of the staple crop, are largely responsible for the keeping up of the disease. Anything radical done to them aims a blow at the chief food source. It is impossible to spread petroleum over miles and miles of rice fields. Such things as eradicating undergrowth in and near the towns have been done, but the long grass, &c., which harbour mosquitoes have not, I believe, been attacked, neither have "mosquito brigades "been formed.

I am, Sir,

A word or two i supply a reason for extent explain the d prophylaxis. The c a broad level stret

Yours faithfully, Medical Mission, Tananarive, June 28th, 1907.

west, and south. Inrough this plain to the west there courses a large river, and further west, again, are several rivers rising in the mountains in the centre of the island. These irrigate other valleys, also devoted to the cultivation of rice.

Until recently, malaria was not endemic in these valleys. The population along them is by no means dense, but it is fairly large. Along the river-banks is much long grass, and near the margins grow the rushes used largely for thatching. The natives build their huts quite close to the rice-fields. Mosquitoes swarm there, and when one has the opportunity of noting them one finds that, sometimes at any rate, they are practically all Anopheles. Probably these places are actually more infested than formerly with mosquitoes.

C. F. A. Moss, M.D.

Utilizing these data for public health requires coordinations across academia, industry, government, and public health

What is the public health application? What will the data be used for and who will analyze the data? How will the data be **analyzed**, **aggregated**, and **anonymized**?

Multiple epidemiological zones

Year round, endemic transmission on the East and West Coasts Central Highlands and South have periodic outbreaks

How can we measure mobility patterns?

"The different tribes send out scouts to find out where rain has fallen, and where grazing will be available. On the basis of their information a decision is taken which may involve the movement of a considerable number of people for a distance of even 100 miles in 60 hours. It has been said of these scouts that they "... lie scientifically to try to ensure that their own people get first to the best grazing."

Prothero (1961) WHO Report

 $P(import_{i \to j} | T_d) = 1 - (1 + \alpha b E T_d)^{-1/\alpha}$

 $P(import_{i\to j}|T_d) = \lambda_i T_d/200$

 $P(import_{i \to j} | T_d) = PfPR_{2-10}(i)T_d/200$