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The role of the environment 

• Historically, classical SIR dynamics, which do not 
explicitly model the environment, have been 
very successful at modeling outbreaks. 

 

• However, the environment mediates 
transmission for many pathogens, which can 
impact dynamics. This occurs in a variety of 
media: water, air, food, fomites, etc.  

 



The role of the environment 

• Mitigation often uses environmental 
interventions: water treatment, hand-washing, 
surface decontamination, etc.  

 

• Explicitly modeling the environment allows us to 
consider environmental interventions, pathogen 
persistence and transport, and the variability of 
pathogen dose.  
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• EITS (Li, 2009) and SIWR (Tien and Earn, 2010) 
are two models that explicitly considers the role 
of the environment. 
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• We need to model the relationship between the 
number of pathogens someone is exposed to 
and the corresponding probability of infection 

dose–response relationship needed 



Dose-response relationship 

• The probability of becoming infected may not be 
linear with pathogen dose.  

Figure: Example DR functions, with same ID50. 

• Categories of DR 
functions 
• Biologically derived: 

exponential, exact beta-
Poisson 

• Mathematically convenient: 
Hill functions, linear, 
approximate Beta-Poisson 

• Empirically derived: log-
normal, Weibull 



State of the field 

• The field of quantitative microbial risk 
assessment (QMRA) has developed much 
the experimental dose–response 
literature. 

• Theoretical work for ODE transmission 
models has been agnostic to functional 
form. 

• Implications of the choice of dose–
response functional form have not 
previously been described. 

 



Example: Cryptosporidium 

• Cryptosporidium is a genus of parasitic protozoa that cause 
gastrointestinal illness (cryptosporidosis).  

• The spore form (oocyst) is environmentally hardy and resists 
chlorine disinfection. 



Example: Cryptosporidium 

• Dose-response data is available for the Iowa strain of C. 
parvum in Dupont et al. 1995 (NEJM).  

• We fit six dose-response 
functions to this data. 

• We use the functions in an 
EITS model (with exposed 
compartment) parameterized 
to loosely represent 
Cryptosporidium. 

Brouwer et al. 2017. Plos Comp Bio. 



Example: Cryptosporidium 
𝑆 = −𝑆 × 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑟𝑎𝑡𝑒 × 𝑓(𝑑𝑜𝑠𝑒) 



Example: Cryptosporidium 

What appears to be good agreement 
in dose-response functions creates 
dramatically different dynamics! 

𝑆 = −𝑆 × 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑟𝑎𝑡𝑒 × 𝑓(𝑑𝑜𝑠𝑒) 



Example: Cryptosporidium 

• Why are medium and high dose data so 
uninformative for disease dynamics? 



Example: Cryptosporidium 

• Why are medium and high dose data so 
uninformative for disease dynamics? 

• There is significant spread in the low-dose 
regime, where the dynamics are actually 
happening. 



This is a problem 

• Experimental data is well-fit by many dose–
response functions, but these all give very 
different dynamics.  

• Dynamics are controlled by the low-dose regime, 
but we have little-to-no experimental data there. 



Is this modeling approach futile? 



Is this modeling approach futile? 

• Not necessarily!  

 



Is this modeling approach futile? 

• Not necessarily!  

• The previous example assumes that we 
know all of the other parameters, like 
shedding and pick-up rate, but this is 
unrealistic. 

• We can manage multiple sources of 
uncertainty with identifiability analysis, 
and environmental monitoring can provide 
additional information. 

 



Fitting to data 



Fitting to data 

Different dose response models can fit the data equally well. 



Fitting to data 

But the different models predict different pathogen 
concentrations. 



Infectivity and shedding 

• The low-dose infectivity and the shedding 
rate can trade-off (i.e. are in the same 
identifiable combination) to give the same 
case data. 

• Fewer, highly infectious pathogens 

• More, less infectious pathogens 



Infectivity and shedding 

• The low-dose infectivity and the shedding 
rate can trade-off (i.e. are in the same 
identifiable combination) to give the same 
case data. 

• Fewer, highly infectious pathogens 

• More, less infectious pathogens 

• Observing the concentration of pathogens 
in the environment could point us to the 
right place on the continuum. 



Fitting to data 

So, if we measure the environment… 



Fitting to data 

… we can fit to both data sets using a linear model. This 
approach allows us to estimate, not fix a priori, the infectivity. 



Milwaukee Cryptosporidium 
outbreak 
• In March of 1993, one of Milwaukee’s two water 

treatment plants malfunctioned. 

• Cases of watery diarrhea began shortly 
thereafter. 

• Cryptosporidium was isolate from stool samples. 

• Approximately 400,000 people were affected. 

• Turbidity was recorded daily, but only two water 
samples were tested for Cryptosporidium 
concentration. 

 

 



Milwaukee Outbreak 

• Here, we use turbidity data as a proxy for exposure to 
the pathogen compartment, and fit the model to the 
case data. 



Milwaukee Outbreak 

• We can estimate, under reasonable assumptions of 
water consumption rates, that the infectivity was an 
order of magnitude greater than the Iowa strain of C. 
parvum, much closer to the TAMU strain.  



Milwaukee Outbreak 

• Environmental monitoring can help us estimate 
infectivity from data, instead of being forced to assume 
an infectivity from a dose–response form. 



Final thoughts 

• Most dose-response data is in the middle and 
high dose regime, but it is the low dose regime 
that governs dynamics. 

• Constraining functions at higher doses does not 
satisfactorily constrain behavior at low-doses. 

• Statistical “best-fit” is only one of many criteria 
that should be taken into account. Biological 
mechanism and realism of the low-dose regime 
should be primary.  

 

 



Final thoughts 

• Incorporating the environment into models: 

• better understanding of the role and importance 
of underlying environmental processes. 

• Can assess potential interventions:  

• more effective intervention design and allocation 
of resources. 

• Significant challenges remain. 

• Low-dose regime of dose-response functions 



Thank you! 
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