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Given a fixed budget of sensors,
where should they be placed to optimally inform
decision-making®?

sensor networks in sensor networks
biology for measurement and
surveillance
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Relatively simple patterns often underly complex data

Pixel space is
larger than
astronomical
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Compressio
and
Compressive Sensing

reconstruct by
solving for sparse representation

T subject to some specific constraints



Reconstruction by Compressive Sensing
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from Baraniuk, 2007 .
original reconstructed from To reconstruct:

10% measurements
minimize ||s||q,
such that y = Os.

single pixel camera, reconstructions from e Candés, Romberg & Tao, 2006.
http://dsp.rice.edu/cscamera e Donoho. 2006.



Why does [1-minimization promote sparsity”
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from Bryan & Leise, SIAM Review 2013




Simple Example: Beating Nyquist Sampling

f(t) = sin(73 x 27t) + sin(b31 x 27t)
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Pixel space
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Sparse sensor placement optimization for classification
(SSPOC)



Standard

Acquire full
measurements

Compressed Sensing

Acquire
compressed
measurements

SSPOC
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very few, key
measurements
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from image to decision:

n=(¥,w) x

0 \NH.HI”“H | ||' L

Image has n pixels
W . feature basis, nx r

w decision vector, rx 1
S sparse sensors, n x 1

0 1000 2000 3000 4000
pixels

n>>=r

To solve tor sparse sensor locations,

s = argmin ||s’||;, subject to ¥ls' = w.
S/

S Is mostly zeros; the non-zero elements correspond to sensor
locations, where we want to measure.

Brunton, Brunton, Proctor & Kutz, in review, arXiv:1310.4317.



Measurements Features Classification
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Which person is in the picture?

ensemble
Of sparse sensor human
locations gaze
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SSPOC on human faces



genes

SRBCT cancer type:
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: microarray dataset measured
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average expression (normalized)



What is the tumor type?

more measurements may
not always be better!

Accuracy
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Kinematics Data

Dynamics

Standard operating procedure

Refined analysis
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Statistics + Clustering
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Cluster index
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Temporal evolution + Markov model

>

Attractor diameter

Cluster diameter

Cluster standard
deviation

Lyapunov
exponent

Entropy of the
transition matnx

Kaiser et al., Cluster-based reduced-order modeling

of a mixing layer, J Fluid Mechanics 2014.

Probabilistic reduced order model

of dynamic regimes
with sparse sensors

Eurika Kaiser



Verbal Autopsy: given a budget
of questions to ask, which ones
are most informative of HIV
status?

Karonga VA
from ALPHA dataset
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with C. Calvert, S. Clark, T. McCormick, UW Depts. of Sociology & Statistics
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