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Given a fixed budget of sensors, 
where should they be placed to optimally inform 

decision-making?
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sensor networks in 
biology

sensor networks
for measurement and

surveillance



Pixel space is 
larger than  

astronomical

Natural Image Space

Relatively simple patterns often underly complex data



Compression 

F F�1truncate

10% random† measurements

reconstruct by 
solving for sparse representation

† subject to some specific constraints

full data 10% of data

and 
Compressive Sensing



Reconstruction by Compressive Sensing

from Baraniuk, 2007.

original reconstructed from 
10% measurements

single pixel camera, reconstructions from 
http://dsp.rice.edu/cscamera

To reconstruct:

• Candès, Romberg & Tao, 2006. 
• Donoho, 2006.

minimize ksk1,
such that y = ⇥s.
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Why does l1-minimization promote sparsity?

from Bryan & Leise, SIAM Review 2013



Two degrees-of-freedom controllers: Feedforward and Feedback

Steve Brunton

These notes provide a brief overview of combined feed-
forward/feedback control. An emphasis is placed on the
various controller topologies and relative strengths and
weaknesses of each approach. Robustness, bandwidth,
and time-domain performance are considered. Finally, a
short set of useful references are provided.

We will investigate a one degree-of-freedom feedback
controller, where the error signal is the only input to the
controller. Next, we introduce a two degrees-of-freedom
controller, where both the reference and measurement sig-
nals are passed as inputs to the controller. In this way,
it is possible to apply feedforward control based not he
reference and feedback control based on the error. There
are various strategies for how to design such a coopera-
tive feedback/feedforward controller, and a few practical
issues are addressed.

f(t) = sin(73⇥ 2⇡t) + sin(531⇥ 2⇡t)

These notes are heavily based on the text by Skogestad
& Postlethwaite (2005), which is the definitive source for
practical feedback control engineering. In fact, much of
the material presented here is a summary or simplification
of material found in Skogestad & Postlethwaite (2005).

Recall that feedback control is good for the following:
1) unknown disturbances and sensor noise,
2) un-modeled dynamics,
3) unstable dynamics.

1 One degree-of-freedom control

One degree-of-freedom (1DOF) control refers to the case
when feedback control acts exclusively on the error signal,
e = r�y

m

, where y
m

= y+n is the noisy measurement. We
may consider 1DOF control the classical closed-loop feed-
back control strategy.

Remark 1 It is possible to include another transfer function
from y to y

m

in case there are sensor dynamics in addition to
the additive noise.

Reference tracking

Figure 1 shows the standard reference tracking problem.

Reference tracking & disturbance rejection

Figure 2 now shows the 1DOF controller with the addition
of a disturbance d and disturbance dynamics G

d
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Figure 1: 1DOF control for reference tracking.
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Figure 2: 1DOF control for reference tracking and distur-
bance rejection.

We may express the output y in terms of transfer func-
tions on the inputs r, d, and n:

y = G

d

d+GK(r � y � n)

(I +GK)y = G

d

d+GKr �GKn

Therefore, we have:

y = (I +GK)�1
GK| {z }

T

r + (I +GK)�1

| {z }
S

G

d

d� (I +GK)�1
GK| {z }

T

n

S is the sensitivity and T is the complimentary sensitivity. If
we let L = GK be the loop transfer function, then we have:

S = (I + L)�1 (1)

T = (I + L)�1
L (2)

Since we are interested in minimizing the error e

(without noise), the following expression is more useful:

e = y � r = �Sr + SG

d

d� Tn (3)

Remark 2 The disturbance plant G
d

and the system plant G
are often closely related. For example, disturbances and control
inputs may both be amplified by a natural instability.
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Simple Example: Beating Nyquist Sampling
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Acquire full 
measurements

Make 
decision

Compress 
data

Reconstruct 
full data
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Make 
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To solve for sparse sensor locations,

s is mostly zeros; the non-zero elements correspond to sensor 
locations, where we want to measure.

0 1000 2000 3000 4000

0 0

s rw

pixels
 r

Image has n pixels
feature basis, n × r 

w decision vector, r × 1
s sparse sensors, n × 1

n >> r

⌘ = ( rw)Tx

from image to decision:

Brunton, Brunton, Proctor & Kutz, in review, arXiv:1310.4317.
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ŵT

Φ̂1 ∈ Rq×n

Φ̂2 ∈ Rq×p

Φ̃ ∈ Rp×n

w

wTΨT
r

a1

a2

η
C

ho
os

e 
Se

ns
or

 L
oc

at
io

ns

…

…



ensemble 
of sparse sensor 

locations
image human 

gaze

Yarbus, 1967.SSPOC on human faces

Which person is in the picture?
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28 sparse sensors:
0.95 ± 0.083 accuracy

microarray data from  
http://home.ccr.cancer.gov/oncology/oncogenomics/ 

microarray dataset measured 
2308 genes for 83 samples 

What is the tumor type?



Number of Genes Probed 

What is the tumor type?
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more measurements may 
not always be better!



Eurika Kaiser 

Probabilistic reduced order model  
of dynamic regimes 
with sparse sensors

Kaiser et al., Cluster-based reduced-order modeling 
of a mixing layer, J Fluid Mechanics 2014.
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with C. Calvert, S. Clark, T. McCormick, UW Depts. of Sociology & Statistics

accuracy 
asymptotes at 
~ 0.8

questions most 
informative of 
HIV status 
consistently 
show up in 
solutions

Verbal Autopsy: given a budget 
of questions to ask, which ones 
are most informative of HIV 
status?

Karonga VA 
from ALPHA dataset
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