Sparse sensor placement optimization for classification (SSPOC)

Dept. of Biology UW Institute of Neuroengineering Data Science Fellow, eScience Institute Program in Neuroscience University of Washington

2016-04-19 IDM, Disease Modeling Symposium Given a fixed budget of sensors, where should they be placed to optimally inform decision-making?

sensor networks in biology

sensor networks for measurement and surveillance

Relatively simple patterns often underly complex data

Compression and Compressive Sensing

10% random† measurements

reconstruct by solving for sparse representation

† subject to some specific constraints

Reconstruction by Compressive Sensing

from Baraniuk, 2007.

• Candès, Romberg & Tao, 2006.

• Donoho, 2006.

original

single pixel camera, reconstructions from http://dsp.rice.edu/cscamera Why does I₁-minimization promote sparsity?

Simple Example: Beating Nyquist Sampling

200

0

400

600

frequency (Hz)

800

1000

0.25 0.26 0.27 0.28 0.29 time (s)

Sparse sensor placement optimization for classification (SSPOC)

$$\mathbf{\Psi}_r \mathbf{w}$$

from image to decision:

$$\eta = (\boldsymbol{\Psi}_r \mathbf{w})^T \mathbf{x}$$

Image has *n* pixels Ψ_r feature basis, $n \times r$ W decision vector, $r \times 1$ S sparse sensors, $n \times 1$

n >> r

To solve for sparse sensor locations,

$$\mathbf{s} = \operatorname*{argmin}_{\mathbf{s}'} ||\mathbf{s}'||_1, \text{ subject to } \mathbf{\Psi}_r^T \mathbf{s}' = \mathbf{w}.$$

s is mostly zeros; the non-zero elements correspond to sensor locations, where we want to measure.

Which person is in the picture?

ensemble of sparse sensor locations

SSPOC on human faces

Yarbus, 1967.

SRBCT cancer type:

What is the tumor type?

microarray dataset measured 2308 genes for 83 samples

microarray data from http://home.ccr.cancer.gov/oncology/oncogenomics/

What is the tumor type?

BL

Number of Genes Probed

Accuracy

Eurika Kaiser

Probabilistic reduced order model of dynamic regimes with sparse sensors

Kaiser *et al.*, Cluster-based reduced-order modeling of a mixing layer, J Fluid Mechanics 2014.

Verbal Autopsy: given a budget of questions to ask, which ones are most informative of HIV status?

