A Tale of Two Parasites

Statistical modelling to support NTD control in Africa

Peter J Diggle
Lancaster University

MDA: a tool for control of vector-borne filarial disease

- Ivermectin (Mectizan): annual dose clears microfilarial infections of the blood
- generally considered safe, with no serious side-effects
- mass distribution made possible by donation programme (Merck)
- used in multi-national programmes to combat onchocerciasis and lymphatic flariasis

Onchocerciasis: distribution

Lymphatic filariasis: distribution

Distribution and status of preventive chemotherapy for lymphatic filariasis, worldwide, 2014

The boundaries and names shown and the designations used on tris map do not imply the expression of any opinion whatsoever on the part of the Worid Healih Organization concerning the legal status of any country, terittry, city or area or of its authorites, or concerning the delimtation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yelt be full agreement. 9 WHO 2015. All rights reserved

Data Source: World Health Organizaton hap Production: Control of Neglected ropical Diseases (NTD)

The Loa loa problem

People who are heavily co-infected with Loa loa parasites can experience serious (occasionally fatal) adverse reactions to ivermectin

First solution to the Loa loa problem: prevalence mapping

- Individuals at risk of experiencing an SAE are those with high microfilarial loads
- Difficult/expensive to measure individual MF load
- Individuals with high MF loads are likely to be found in high-prevalence areas

High-risk area \Leftrightarrow Prevalence $>20 \%$

"The answer to any prediction problem is a probability distribution"
Peter McCullagh
$S=$ state of nature
$Y=$ all relevant data
$T=\mathcal{F}(S)=$ target for prediction

$$
\begin{array}{ll}
\text { Model: } & {[S, Y]=[S][Y \mid S]} \\
\text { Prediction: } & {[S, Y] \Rightarrow[S \mid Y] \Rightarrow[T \mid Y]}
\end{array}
$$

$T(x)=$ prevalence $>20 \% \quad$ (yes/no)

Geostatistical model schematic

The pink map

- 0.5%
- $5-10 \%$
- 10.15%
- $15-20 \%$
- $>20 \%$

Probability of [high risk]

0.9-0.95
0.8-0.9
0.7-0.8
0.6-0.7
0.5-0.6
0.4-0.5
0.3-0.4
0.2-0.3
$0.1-0.2$
0.05-0.1
0-0.05
No Data

Second solution... RAPLOA

Calibration surveys

- 223 villages
- 24 to 229 individuals per village, total 19,128

Calibration data

RAPLOA survey locations

RAPLOA exceedance map

Third solution... use prevalence to predict numbers of high-risk individuals

Cumulative distributions of MF load

- calibration data include individual MF loads
- wide variation in prevalence and MF load
- but distributional shape broadly consistent across all villages

Schematic: $\mathrm{P}=$ prevalence; $\mathrm{T}=$ proportion highly infected

Target for prediction: $T=\rho(U) \times\{1-G(20000 ; \lambda(V), \kappa)\}$

Fourth solution... the Loascope

CellScope
 UC Berkeley

TECHNOLOGY
 APPLICATIONS
 TEAM
 PUBLICATIONS
 FLETCHER LAB

Mobile Microscopy taking imaging to new places

Comparing traditional microscopy and Loascope

15,181 people from 88 villages in Cameroon, each tested by traditional miroscopy (MF) and Loascope (LS).

- High concordance wrt infection status $(\kappa=0.858)$

	CS		
	0	1	Total
MF 0	12135	357	12492
1	268	2421	2689
Total	12413	2779	15181

- Ranges of discordant values:
- $M F=0 \Rightarrow 31 \leq L S \leq 7261$
- $L S=0 \Rightarrow 20 \leq M F \leq 19940$
- Parasite-loads well-calibrated except at very high MF loads

Variation between villages: exploiting correlation

- The proportion of a rare condition (here, MF > 20K) in a sample is an imprecise estimate of the proportion in the population
- Correlation between community-level prevalence and intensity of infection \Rightarrow information gain (narrower prediction intervals)

Both prevalence and intensity give important information and both are necessary for efficient prediction

Current debate: MDA or TNT (test-and-not-treat)

Model-validation study in Cameroon

(1) Loascope data from approx 100 individuals in each of $\mathbf{3 0}$ villages
(2) Use model-based decision rule:

- $P=$ probability that $<1 \%$ of individuals have >20000 parasites/ml
- MDA indicated if $P>0.95$
(3) Additional sample/census in each village to confirm (or not) model-based decision

Summary Results

Phase 1: Results based on algorithm predications

Phase 2:
Validation

	MDA	TNT	
MDA	14	5	19
TNT	0	5	5
	14	10	

Algorithm-based predictions are conservative, resulting in 5 villages receiving TNT that could have received MDA, based on validation results

Summary Results

Phase 1: Results based on algorithm predications

		MDA	TNT	
	Phase 2:			
Validation	MDA	14	5	$\mathbf{1 9}$
	TNT	$\mathbf{0}$	5	$\mathbf{5}$
		$\mathbf{1 4}$	$\mathbf{1 0}$	

No villages deemed unsafe to treat with MDA in validation phase were targeted for MDA based on algorithm predictions

Relationship of model-based to test-and-not-treat

- Model-based strategy converges to test-and-not-treat as appetite for risk decreases
- Zero risk is unattainable
- $20000 / \mathrm{ml}$ a uniquely correct threshold?
- measurement error in estimates of parasites/ml?
- Sequential algorithm:

Initial sample $\Rightarrow P($ "safe" for MDA $)=p$

$$
\begin{array}{ll}
p>0.95 & \text { "safe" } \\
p<0.05 & \text { "not safe" }
\end{array}
$$

$0.05<p<0.95$ increase sample size

The geospatial extension
$U(x)$: log-odds prevalence

$\mathrm{V}(\mathrm{x})$: log-intensity

\Rightarrow narrower prediction intervals (borrowing strength)

Mapping areas "safe" for MDA

"safe" \Leftrightarrow "at least 95% certain that at most 1% of individuals have more than 20,000 parasites/ml
$P\{P[M F>20,000]<0.01 \mid$ Data $\}$

- Vaccine safety analogue $\quad \mathrm{P}(S A E)=$?
- Loa loa...what do we know?
- Predictive distribution of $Y=M F$ load at location $x: f_{x}(y \mid$ data $)$
- Risk of SAE given MF $=\boldsymbol{y}$

$$
\begin{array}{r}
p(y)=\Phi\left\{-1.05+\left(1.87\left[\log _{e}(y)-11.06\right]\right)\right\} \pm ? \\
\text { Boussinesq et al }(2003, \text { corrected })
\end{array}
$$

- Predictive target

$$
T(x)=\operatorname{Prob}(\operatorname{SAE} \text { at } x)=\int p(y) f_{x}(y \mid \text { data }) d y
$$

- Draw samples from predictive distribution of $\boldsymbol{T}(\boldsymbol{x})$ over required area

Conclusions

- Principled statistical methods
- force assumptions into the open
- deliver optimal solutions within the declared assumptions
- But there is no free lunch
"We buy information with assumptions"
C H Coombs
- analyse problems, not data
"Better an approximate answer to the right question than a precise answer to the wrong question"

John Tukey

References

Boussinesq, M., Gardon, J., Gardon-Wendel, N. and Chippaux, J. (2003). Clinical picture, epidemiology and outcome of Loa-associated serious adverse events related to mass ivermectin treatment of onchocerciasis in Cameroon.
Filaria Journal, 2, 1-13.

Diggle, P.J., Moyeed, R.A. and Tawn, J.A. (1998). Model-based Geostatistics (with Discussion). Applied Statistics 47 299-350.

Diggle, P.J., Thomson, M.C., Christensen, O.F., Rowlingson, B., Obsomer, V., Gardon, J., Wanji, S., Takougang, I., Enyong, P., Kamgno, J., Remme, H., Boussinesq, M. and Molyneux, D.H. (2007). Spatial modelling and prediction of Loa loa risk: decision making under uncertainty. Annals of Tropical Medicine and Parasitology, 101, 499-509.

Schlüter, D.K., Ndeffo-Mbah, M.L., Takougang, I., Ukety, T., Wanji, S., Galvani, A.P. and Diggle, P.J. (2016). Using community-level prevalence of Loa loa infection to predict the proportion of highly-infected individuals: statistical modelling to support lymphatic filariasis elimination programs. PLoS Neglected Tropical Diseases, 10, 12, e0005157. doi:10.1371/journal.pntd. 0005157

