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Complex physical models

Most large and complex physical systems are studied by mathematical models,

implemented as high dimensional computer simulators. Some examples are:

Oil reservoirs An oil reservoir simulator is used to manage assets associated

with the reservoir, in order to develop efficient production schedules, etc.

Natural Hazards Floods, volcanoes, tsunamis and so forth, are all studied by

large computer simulators.

Energy planning Simulators of future energy demand and provision are key

components of planning for energy investment.

Climate change Large scale climate simulators are constructed to assess

likely effects of human intervention upon future climate behaviour.

Galaxy formation The study of the development of the Universe is carried out

by using a Galaxy formation simulator.

Disease modelling Agent based models are used to study interventions to

control infectious diseases.

The science in each of these applications is completely different. However, the

underlying methodology for handling uncertainty is the same.
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This case study was based on a research project that explored HIV

transmission in Uganda.

The simulator used, Mukwano, is a dynamic, stochastic, individual based

computer model that simulates the life histories of hypothetical individuals

(births, deaths, sexual partnership formation and dissolution and HIV

transmission, modelled using time-dependent rates).

Each individual is represented by a number of characteristics, such as gender,

date of birth, HIV status, level of sexual activity, concurrency level.

The behavioural inputs take different values in each of three calendar time

periods. This enables sexual behaviour to vary over time.

Twenty behavioural and two epidemiologic inputs were varied for this study.
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The empirical data were collected from a rural general population cohort in

South-West Uganda. The cohort was established in 1989 and currently

consists of the residents of 25 villages.

Every year, demographic information on the cohort is updated, the population is

tested for HIV, and a behavioural questionnaire is conducted.

In this study, there are 18 simulator outputs with calibration targets and limits

for what constitutes an acceptable match.

These include male and female population sizes,

male and female HIV prevalences at three time points.

outputs that check that the behavioural features of the model matched the

empirical data.

The run time for a single simulation for the study varies between 10 minutes

and 3 hours.
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Full details of example are in the paper:

Ioannis Andrianakis , Ian R. Vernon, Nicky McCreesh, Trevelyan J. McKinley,

Jeremy E. Oakley, Rebecca N. Nsubuga, Michael Goldstein, Richard G. White

(2015) Bayesian History Matching of Complex Infectious Disease Models Using

Emulation: A Tutorial and a Case Study on HIV in Uganda,

PLOS Computational Biology.

More careful and detailed treatment in

Ioannis Andrianakis , Ian R. Vernon, Nicky McCreesh, Trevelyan J. McKinley,

Jeremy E. Oakley, Rebecca N. Nsubuga, Michael Goldstein, Richard G. White

(2017) Efficient history matching of a high dimensional individual based HIV

transmission model”

to appear in SIAM/ASA Journal on Uncertainty Quantification.

which applies a development of the same ideas to a much larger version of the

model (96 inputs, 50 outputs).
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Simple 1D Exponential Growth Example

We are interested in the concentration of a chemical evolving in time.

We model this concentration as f(x, t) where x is a rate parameter and t is

time.

We think f(x, t) satisfies the differential equation or model:

df(x, t)

dt
= xf(x, t) =⇒ f(x, t) = f0 exp (xt)

We suppose the initial conditions are f0 = f(x, t = 0) = 1.

Model features an input parameter x which we want to learn about.
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Black horizontal line: the observed measurement of f

Dashed horizontal lines: the measurement errors
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Uncertainty in the measurement of f(x, t = 3.5) leads to uncertainty in the

inferred values of x.

Hence we see a range (green/yellow) of possible values of x consistent with

the measurements, with all the implausible values of x in red.
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Three problems with this approach

(i) We can’t draw the curve on the graph

(because our model is expensive to evaluate for any choice of inputs).

(ii) Even if we could draw the curve, we wouldn’t be able to do the inversion

(because the model has many inputs and many outputs, linked by complex

curves)

(iii) Even if we could do the inversion, this would only tell us about the

behaviour of the model, not the real real world

(because the model is not the same as the world)

Different physical models vary in many aspects, but the approaches for

addressing these problems are very similar

(which is why there is a common underlying methodology).
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General structure of problem

Each simulator can be conceived as a function f(x), where

x: input vector, representing unknown properties of the physical system;

f(x): output vector representing system behaviour.

Interest in the “appropriate” choice, x∗, for the system properties x,

how informative f(x∗) is for actual system behaviour, y.

the use of historical observations z, observed with error on a subset yh of y,

corresponding to a sub-vector fh(x) of the f(x)

the best assignment of any decision inputs, d, in the model.

In almost all cases

(i) evaluation of f(x) is expensive

(ii) inferring x∗ from z is hard

(iii) relating f(x∗) to y is challenging.
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The Bayesian approach unifies and synthesises all of the different sources of

uncertainty arising in such problems into an overall judgement of uncertainty.

In this approach, all probablities are the subjective judgements of individuals

so, not the probability that the disease will spread, but Anne’s probability or

Bob’s probability (which may differ) for this outcome.

The Bayesian approach has many excellent tools to help Anne and Bob to

create careful, well founded and clearly documented uncertainty judgements,

and, if they do differ, to explore the underlying reasons for such disagreemnt

and to suggest possible resolutions.

The Bayesian approach for studying uncertainty in computer models is well

established and successful, particularly for models of moderate size and

complexity.

An excellent resource for work in this area is the Managing Uncertainty in

Complex Models web-site, www.mucm.ac.uk
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The Bayesian approach can be difficult in large problems because of the

extreme level of detail which is required in the specification of beliefs.

In the Bayes linear approach, we combine prior judgements of uncertainty with

observational data, using expectation rather than probability as the primitive.

This approach is similar in spirit to a full Bayes analysis, but uses a much

simpler approach for prior specification and analysis, and so offers a practical

methodology for analysing partially specified beliefs for large problems.

Bayes linear adjustment may be viewed as an approximation to a full Bayes

analysis or the appropriate analysis given a partial specification.
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The Bayes linear approach

The Bayes linear adjusted expectation and variance for vector y given vector z

are

Ez[y] = E(y) + Cov(y, z)Var(z)−1(z − E(z)),
Varz[y] = Var(y)− Cov(y, z)Var(z)−1Cov(z, y)

For a detailed treatment, see

Bayes linear Statistics: Theory and Methods, 2007, (Wiley)

Michael Goldstein and David Wooff

For a quick overview, see

Bayes linear analysis, 2015, Michael Goldstein, in Wiley StatsRef: Statistics

Reference Online (7 pages)

And all of our papers in this area contain examples of Bayes linear

computations.
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Function emulation

Uncertainty analysis, for high dimensional problems, is particularly challenging

if f(x) is expensive, in time and computational resources, to evaluate for any

choice of x. [For example, large disease transmission models.]

In such cases, f must be treated as uncertain for all input choices except the

small subset for which an actual evaluation has been made.

Therefore, we must construct a description of the uncertainty about the value of

f(x) for each x.

Such a representation is often termed an emulator of the simulator.

The emulator both contains

(i) an approximation to the simulator and

(ii) an assessment of the likely magnitude of the error of the approximation.

Unlike the original simulator, the emulator is fast to evaluate for any choice of

inputs. This allows us to explore model behaviour for all physically meaningful

input specifications.
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Form of the emulator

We may represent beliefs about component fi of f , using an emulator:

fi(x) =
∑

j βijgij(x) + ui(x)

Global Variation

{βij} are unknown scalars,

gij are known deterministic functions of x, (for example, polynomials)

Local Variation

ui(x) is a second order stationary stochastic process, with (for example)

correlation function

Corr(ui(x), ui(x
′)) = exp(−(‖x−x′‖

θi
)2)
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Consider the graph of f(x): in general we do not have the analytic solution of

f(x), here given by the dashed line.



Consider the graph of f(x): in general we do not have the analytic solution of

f(x), here given by the dashed line.

Instead we only have a finite number of runs of the model, in this case five.
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model at untested values of x, and is fast to evaluate.



The emulator can be used to represent our beliefs about the behaviour of the

model at untested values of x, and is fast to evaluate.

It gives both the expected value of f(x) (the blue line) along with a credible

interval for f(x) (the red lines) representing the uncertainty about the model’s

behaviour.
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Comparing the emulator to the observed measurement we again identify the

set of x values currently consistent with this data.

The uncertainty on x now includes uncertainty coming from the emulator.
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Emulation methods

We fit the emulators, given a collection of carefully chosen model evaluations,

using our favourite statistical tools - generalised least squares, maximum

likelihood, Bayes - with a generous helping of expert judgement.

If the model is slow to evaluate, we typically create an informed prior

assessment based on a fast approximation, then combine with a carefully

designed set of runs of the full simulator to construct the emulator.

We use efficient space filling (multi-level) designs to generate the set of

simulator evaluations to carry out in order to fit the emulators.

(For example, maximin Latin Hypercubes.)

We use careful diagnostics to test the validity of our emulators

(for example, assessing the reliability of the emulator for predicting the

simulator at new evaluations).
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Issues with calibration

Simulator calibration aims to identify the best choices of input parameters x∗,

based on matching data z to the corresponding simulator outputs fh(x).
However

(i) we may not believe in a unique true input value for the simulator;

(because the parameters are not real things - they only exist inside the model -

and different choices may be good for fitting different outputs)

(ii) we may be unsure whether there are any good choices of input parameters

(because there may be serious problems with our simulator)

(iii) full probabilistic calibration analysis may be very difficult/non-robust for

complex simulators.

(because the likelihood surface is complicated and multi-modal, and the Bayes

answer often depends on features of the prior distribution which are hard to

specify meaningfully)
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A conceptually simple procedure is “history matching”.

This means finding the collection, C(z), of all input choices x for which the

match of the simulator outputs fh(x) to observed data, z, is good enough,

taking into account all of the uncertainties in the problem.

C(z) might be empty - suggesting problems with the simulator.

If the data is informative for the parameter space, then C(z) will typically form

a tiny percentage of the original parameter space.

Therefore, even if we do wish to calibrate the simulator, history matching is a

useful preliminary step.



Comparing the emulator to the observed measurement we have identified the

set of x values (the green values) which match the observed history, when we

take into account all of the uncertainties (here, measurement and emulator

error).
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We use an ‘implausibility measure’ I(x) based on a probabilistic metric such as

I(x) =
(z − E(fh(x)))

2

Var(z − E(fh(x)))

(where the variance in the denominator is the sum of all of the individual

variance terms e.g. measurement error, emulator error, discrepancy error and

so forth.)

The implausibility calculation can be performed univariately, or by multivariate

calculation over sub-vectors.

The implausibilities are then combined to identify x with large I(x) as

implausible, i.e. unlikely to be appropriate choices for system inputs.
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History matching in waves

Having identified a non-implausible region of the input space, we refocus our

analysis on this region, by

(i) making more simulator runs in the subregion

(ii) refitting our emulators over the subregion,

(iii) emulating additional outputs (which can be well emulated in the reduced

space)

and repeating the implausibility analysis.

We continue until (hopefully) we identify the region of acceptable matches.

(This is a form of iterative global search.)



We now remove all of the implausible x values (the red values) and resample

and re-emulate within the green region.
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We perform a 2nd iteration or wave of runs to improve emulator accuracy.

The runs are located only at non-implausible (green/yellow) points.

Now the emulator is more accurate than the observation, and we can identify

the set of all x values of interest.



History matching for the case study
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In the case study, after 10 waves, we have reduced the space to about 10−11

of original space. Around 65% of the simulator evaluations in the final space

give runs with acceptable matches to the historical data.
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Limitations of physical models

A physical model is a description of the way in which

system properties (the inputs to the model)

affect system behaviour (the output of the model).

This description involves two basic types of simplification.

(i) we approximate the properties of the system (as these properties are too

complicated to describe fully and anyway we don’t know them)

(ii) we approximate the rules for finding system behaviour given system

properties (because of necessary mathematical and numerical simplifications,

and because we do not fully understand the relationships which govern the

process).

Neither of these approximations invalidates the modelling process.

Problems only arise when we forget these simplifications and confuse the

analysis of the model with the corresponding analysis for the physical system

itself.
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1. We start with a collection of model evaluations, and some observations on actual

system

2. We link the model evaluations to the evaluation of the model at the (unknown)

system values x∗ for the inputs

3. We link the system evaluation to the actual system by adding model discrepancy

4. We incorporate measurement error into the observations



Example: adding model discrepancy

The notion of model discrepancy is related to how accurate we believe the

model to be.



Model discrepancy is represented as uncertainty around the model output

f(x) itself: here the purple dashed lines.

This results in more uncertainty in x, and hence a larger range of x values.
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Internal discrepancy

Structural uncertainty assessessment should form a central part of the problem

analysis. We may distinguish two types of model discrepancy.

(i) Internal discrepancy

Any aspect of discrepancy we can assess by direct experiments on the

computer simulator.

For example,

we may vary parameters held fixed in the standard analysis,

we may add random noise to the state vector which the model propagates,

we may allow parameters to vary over time.

we may add noise to the forcing functions used to evaluate the simulator
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Assessing internal discrepancy

We assess internal discrepancy by

(i) constructing a series of test experiments, for example an ensemble of

perturbations to features that we are allowed to vary,

(ii) carrying out detailed computer experiments where we vary the ensemble for

some selected choices of input parameters to find the internal discrepancy

variance for these input values

(iii) emulating internal discrepancy variance across all possible choices of

inputs.

Note, in particular, that this method gives an order of magnitude assessment for

the correlation between discrepancy values across time.
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(ii) External discrepancy

This arises from the inherent limitations of the modelling process embodied in

the simulator.

It is determined by a combination of expert judgements and statistical

estimation.

The simplest way to incorporate external discrepancy is to add an extra

component of uncertainty to the simulator outputs.

For example we may introduce, say, 10% additional error to account for

structural discrepancy.

(This is simple, but much better than ignoring external discrepancy.)
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External discrepancy and reification

Better is to consider what we know about the limitations of the model, and build

a probabilistic representation of additional features of the relationship between

system properties and behaviour.

Sometimes, this is called reification,

(from reify - to treat an abtract concept as if it was real).

We cannot evaluate the reified simulator, but we can emulate it.

For example, we can treat our actual simulator as a prior for the reified form.

This is similar to the way in which we use fast simulators to act as priors for

slow simulators.

So, the methods for history matching based on emulation will work in the same

way using the reified emulator.



Forecasting

Constraints on x from observations impose constraints on f(x, t) in the future.



We choose values of x consistent with the measurement of f(x, t) at t = 3.5,

and perform corresponding runs of the simulator, possibly at a variety of control

choices. If the simulator is expensive, we may emulate these future outcomes.



These are future projections within the simulator. To transfer these to future

projections for the world we need to add the effects of structural discrepancy.
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Adding structural discrepancy to forecasts

We represent the physical system as the sum of the simulator forecast and the

structural discrepancy.

From this we can derive the joint distribution of the past and the future and

therefore make inferences about the future, given the past and our control

choices. There are straightforward Bayes linear ways to do this.

Careful discrepancy assessment will

(i) correct our overconfidence in our projections

(by adding appropriate levels of additional uncertainty)

(ii) increase our forecast accuracy

(by correcting for systematic biases in our simulator).

(iii) help us to make reliable control choices for future outcomes.

(by recognising the real world risks of our various control choices).
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Concluding comments

There is a general Bayesian methodology for performing detailed uncertainty

analyses for complex physical systems (such as disease transmission), which

are modelled by computer simulators.

Key features of this methodology are

(i) simulator emulation, to allow us to explore the full range of outputs of the

simulator

(ii) history matching to identify all input choices consistent with historical data,

and thus all future outcomes consistent with these choices

(iii) structural discrepancy modelling, to make reliable uncertainty

statements about the real world
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