ldentifying spatiotemporal dynamics of

Ebola in Sierra Leone using virus genomes
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Modeling human mobility using physics analogies

n(x)

"

N
0 X0 X
Gravity Radiation Random walks
Ravenstein, E.G., Simini et al. Nature (2012) Rhee et al. IEEE Trans. Networking (2012)

J Roy Stat Soc, (1889)

Truscott and Ferguson,
PLoS Comp Bio (2012) INSTITUTE FOR DISEASE MODELING
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Tracer of human mobility: US banknote random walks

Empirical power law statistics:
Lévy flight: heavy-tailed random walk
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Brockmann, Hufnagel and Geisel, Nature 2006
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Lévy flight is a generalization of diffusion

0B % & o<
—=D,—— . A\ _
ot d|x|“ =

=

L. 19

o

=

2

10 —Germany

10°
flight distance (mi)

Gustafson, Bayati, Eckhoff
Frontiers in Ecology and Evolution, April 2017

Bayati, ] Chem. Phys. 2013

We used space-fractional diffusion as a proxy for
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Tracking Ebola virus in Sierra Leone (2014-2015)

Infections as a tracer of

Nongowa |-

. erjei< kest -

akua

human mobility o Maloma
eje Bongre

¥ &Jja luah gun -

Luawa

Kissi Kama

Mambolo

Jawie |

Stochastic process Kissi Tongif

Kissi Tengt

. _ . 26 May | | | - 191Jun
Human behavior is dynamic

: . Famulare and Hu, Int. Health (2015)
Population landscape is inhomogeneous

Need: a tool to decide which spatial model explains the epidemic dynamics
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aquenced viral genomes track the outbreak
100 'I | I1 ' I1I ‘ ' Focus on Sierra Leone
80 | Confirmed Sequenced cases
Ebola tracked the course of
9 60 | cases all cases
E ! Sequenced
£ viral Peak of cases in
3 40 ,
o genomes Freetown in
December 2014
20+
“Surge” of
00 100 200 300 400 500 interventions reduced
time (days after 18-03-14) transmission in
Freetown

Dudas et a/. Nature 2017
Fa ng et a/ PNAS 2016 INSTITUTE FOR DISEASE MODELING
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Using open data

FASTA file with >1000 district-localized Arias et al. Virus Evolution (2016)
genomes from Sierra Leone

Sierra Leone data

554 sequences

Dudas et al. bioRxiv 2016 Tong et al. Nature (2015)
I <)// /A

Windia Faranchd

QCoyah jf\/'— 175 sequences

Y - O

{ﬁjreﬁ'ﬁmah Renaelio Park et al. Cell (2015)
2.

B@Q@ 232 sequences
‘ rT‘-@nkonu el Gire et al. Science (2014)

/8 sequences

‘

Be, \
Kenema

Smits et al. Euro Surveillance (2015)

49 sequences



Partially observed transmission network (POTN): fast and adaptable

Famulare and Hu, Int. Health (2015)

Tree that only retains likely direct descendants
Good for finding transmission chains

1 2
® e 2
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Likelihood H L(At =0|t1,ty,dq13, p)
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Poisson mutation model
(u(ty — t1 + 2A1))%2
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exp(—u(t; — t; + 2Ab))
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B: Genetic linkages infer s

atial connectivi

Partially
observed

transmission

network

400
time (days)

POTN:

u=2x10-3 bp/site/year
Gire et al. Science 2016

Open circle: origin
Closed dot: destination

No inferred ancestors,
only likely descendants

Pruned to shortest linkages
for plot
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Our Innovations

Lévy flight fitting for POTN transmission distances
Dynamic spatial model selection using genetic linkages

A decision tool for adaptable spatial pattern prediction
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C: Population and mobility influence transmission
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E: Disease mobility models are calibrated to data
Power law

Let the gravity model
become a
population-weighted
random walk

Normalized
origin by origin

50% chance of staying
in origin chiefdom

Gravity model
concentrates
probability in
population centers
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Likelihood ratio for model selection

Power law Gravity
T T
L. _ CL 1 CG Pczlp 2
Pi; = Y d,O pij i dp

R(p,m2) = [In(p$) — In(p};)]/VN

S

N genetic linkages

Two options:

1) Compare power law
with classical 79 = 1
gravity using same p

2) Scan through P and 72
to determine
maximum likelihood
gravity, compare
to power law
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Switching between Lévy flight and gravity
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Maximum

gravity model
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Trend away from gravity — using MLE estimates

Gravity 230 .
T
® 5 11505 Gravity model preferred
. 100% until 400 days
0 w
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5 | lawpreferred ‘ . ~* 19 estimate is large
0.05
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> 1e-20
Q days

0 100 200 300 400 500
tlme (dayS) INSTITUTE FOR DISEASE MODELING
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Comparison
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Summary and next steps

Phylogeography indicates a Lévy flight or weighted Lévy flight / gravity
Population size is not always predictive of transmission pattern
Adaptable model selection for real-time spatial dynamics of outbreaks

Other models and geographies can be implemented for next outbreak
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