

Swiss Tropical and Public Health Institute Schweizerisches Tropen- und Public Health-Institut Institut Tropical et de Santé Publique Suisse

Associated Institute of the University of Basel

Department of Epidemiology and Public Health Infectious Disease Modelling Unit

### Modelling competition dynamics of drug resistant malaria

#### Tamsin E. Lee and Melissa Penny

April 2019

Funding: Melissa Penny's Swiss National Science Foundation Professorship



Via a theoretical model: What **dynamics** have the strongest influence on the frequency of resistance within a population?

 $\downarrow$  Recombination  $~\downarrow$  Suppression  $~\uparrow$  Competitive release

How does this vary by setting and strategy?

~ 3%, ~ 15%, ~ 40% prevalence (all ages) 5%, 40%, 80% probability of being treated in two weeks



The model

The dynamics

Sensitivity analysis

The model



Adapted SIS model to include within host dynamics (not an explicit within-host model). Hosts carry a mix of sensitive and resistant parasitaemia.

Input: Parameters for key dynamics

Output: The proportion of resistant parasitaemia in the whole population

























Swiss TPH











## Number of infected hosts (without dynamics)

Swiss TPH 😏



Resistance added after 500 days (dashed line).

Proportion of resistant infections (without dynamics)



Swiss TPH

The dynamics





None  $\{0\} \longrightarrow \{0.1\} \longrightarrow$  Maximum  $\{1\}$ 





None  $\{0\} \longrightarrow \{0.004\} \longrightarrow$  Maximum  $\{1\}$ 





None  $\{0\} \longrightarrow \{0.004\} \longrightarrow$  Maximum  $\{1\}$ 





None  $\{0\} \longrightarrow \{0.1\} \longrightarrow$  Maximum  $\{1\}$ 





None  $\{0\} \longrightarrow \{0.1\} \longrightarrow$  Maximum  $\{1\}$ 

Sensitivity analysis









Swiss TPH 😏



Medium transmission

#### High transmission

# Dynamic effects (high transmission only)

Comp. release

.0



Recombination

Swiss TPH

Suppression

Lub I Jakobi M Ju

Simulation

Summary



Model within-host dynamics without explicitly modelling parasite density.

Can track: **Dynamics** -  $\downarrow$  recombination  $\downarrow$  suppression  $\uparrow$  competitive release **Infection parameters** - Infection length (S&R) **Treatment parameters** - Treatment rate that changes in time, reduction in infection length (S & R) **Treatment parameters** - Drug efficacy, drug half-life, adherence



When there is little resistance in the population,  $\uparrow$  competitive release dominates and thus resistance spreads.

When there is high resistance in the population,  $\downarrow$  recombination and  $\downarrow$  suppression have more influence, **especially when transmission is high**.

Treatment increases the proportion of resistant parasitaemia, with or without  $\uparrow$  competitive release. However, the spread of resistance is greatly hindered by  $\downarrow$  recombination, and failing that,  $\downarrow$  suppression.

tamsin.lee@swisstph.ch | TamsinELee.com | @t\_e\_lee

SwissTP

Acknowledgements

SNSF funding

sciCORE high performance computing at The University of Basel

Sebastian Bonhoeffer

Andrew Read

Ian Hastings