Identification of hotspots of rat abundance and their effect on human risk of leptospirosis in a Brazilian slum community

Poppy Miller ¹ Kate Hacker ² Peter Diggle ¹ Mike Begon ³ James Childs ² Albert Ko ² Federico Costa ² Mitermayer Reis ² Chris Jewell ¹

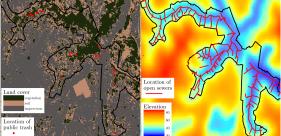
¹Lancaster University

²Yale University

³Liverpool University

April 16, 2018

Poppy Miller (Lancaster University)


Identification of hotspots of rat abundance

April 16, 2018 1 / 22

Background

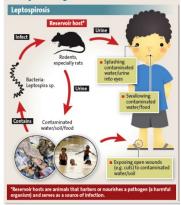
Study area: Pau da Lima, Salvador, Brazil

- Urban slum (0.17 km^2)
- high population density (88% squatters, low income and education level)
- lack of structural planning and basic sanitation
- high levels of many diseases (often spread by rats) e.g. leptospirosis

Background

Rats:

- abundant in urban slums
- reservoir hosts for many diseases


Leptospira:

- survive months in environment
- asymptomatic in reservoir hosts
- spread via shedding in urine

Leptospirosis:

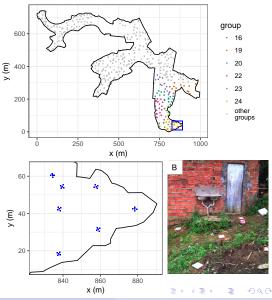
- infection via skin/ mucous membranes
- estimated 1.03 million cases annually
- 90-95% cases are mild
- 10-50% mortality for severe form

How you can get infected

Motivation

Pau da Lima:

- high levels of human leptospirosis
- chronic leptospirosis infection of Norway rat



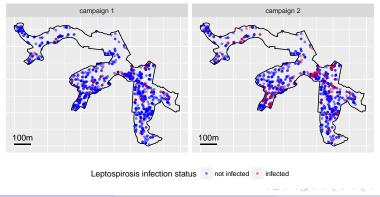
Rodent control is largely ineffective at reducing the burden of leptospirosis in urban slum environments where Norway rats are the primary reservoir hosts.

Reliable estimates of rat abundance and distribution are critical to mounting adequate rodent control in complex urban settings

Rat prevalence: study design

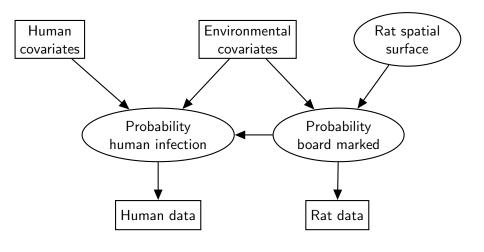
- \bullet 3 valleys, 0.17 km²
- spatially constrained random sample of 340 points + 100 close range points
- 24 groups of points; sampled three groups per week
- 5 tracking plates per location; measured twice (2 consecutive days)
- repeated for dry and wet seasons

Poppy Miller (Lancaster University)


Identification of hotspots of rat abundance

April 16, 2018 5 / 22

Data


Human leptospirosis prevalence: study design and covariates

- 1110 residents in the study area
- MAT titres measured before and after each rat tracking campaign
- pairs of titres determine residents infection status

Model

Model overview

(日) (同) (日) (日) (日)

Model

Rat model

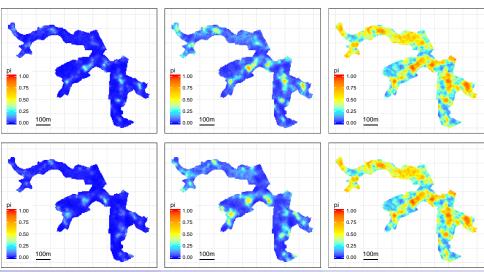
$$m_{ic} \sim \text{Binomial}(p_{ic}, n_{ic})$$
$$\text{cloglog}(p_{ic}) = x_{ic}^{T}\beta + S_{ic} + \log(\mathsf{T}_{ic})$$

$$\begin{split} S_c &\sim \mathsf{MVN}\left(0, \tau^2 + \Sigma_c\right) \\ \Sigma_{cws} &= \sigma^2 \left(1 + V_c\right) \exp\left(-V_c\right) \\ V_c &= \left(\sqrt{3} b_{cws}\right) / \phi \end{split}$$

- *S_c* : Matern 3/2 spatially correlated random effects (separate surface for each campaign)
- *b_{cws}* : distance between points *w* and *s* in campaign *c* (meters)

- *m_{ic}* boards positive for rat marks out of *n_{ic}* total for location *i*, and campaign *c*
- *p_{ic}* : probability of rat marks
- T_{ic} : offset (number of nights board exposed)
- X : rat covariate matrix
- Priors: $\beta_k \sim \text{Normal}(0, 100)$ $\tau^2, \sigma^2 \sim \text{Gamma}(2, 0.5)$ $\phi \sim \text{Gamma}(1.5, 0.05)$

Model


Human Model

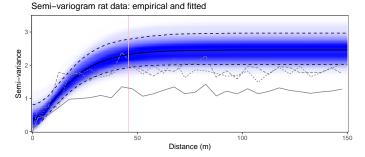
$$y_{jc} \sim \text{Bernoulli}(\pi_{jc})$$

 $ext{logit}(\pi_{jc}) = z_{kjc}^T \gamma + \theta \left(x_j^T \beta + S_{jc} \right) + \delta_k$

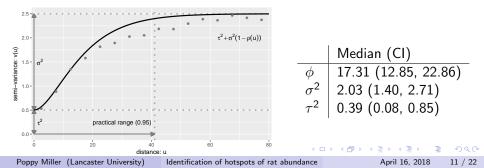
- y_{kjc} : human infection status for location j
- π_{kjc} : probability of human infection
- Z : human covariate matrix
- X : rat covariate matrix at human locations
- S_{jc} : predicted spatial random effect at human locations
- γ, θ : coefficients
- δ_k : random effect for each individual k
- Priors: $\gamma_k \sim \text{Normal}(0, 100), \ \delta_i \sim \text{Normal}(0, \sigma_H), \ \sigma_H \sim \text{Gamma}(2, 0.5)$

Predictive rat surfaces for campaigns 1 and 2

Lower (0.05), median and upper (0.95) predictive probabilities of rat marks



Poppy Miller (Lancaster University)


Identification of hotspots of rat abundance

April 16, 2018 10 / 22

Rate ratios: rat model

Interpretation: The rate of rat mark deposition at the upper quartile value of a covariate is $RR_{U/L}$ multiplied by the rate at the lower quartile of the covariate.

	Rate ratio _{U/L}	Data LQ	Data UQ
Continuous variables	<i>t</i>		
Mean rainfall (mm)	1.46 (1.26, 1.66)	0.3	6.8
Distance 3d public dump (m)	0.60 (0.38, 0.82)	30.5	96.6
Distance 3d open sewer (m)	0.76 (0.60, 0.96)	9.6	17.6
Ground cover % soil	1.49 (0.95, 2.26)	6	41
Ground cover % vegetation	0.71 (0.43, 1.07)	0	57
Binary variables	Rate ratio _{1/0}		
Domestic / non-domestic	1.14 (0.82, 1.45)		

April 16, 2018 12 / 22

Odds ratios: leptospirosis model (significant variables)

Interpretation: The odds of being infected with leptospirosis for a person with a covariate value at the upper quartile for that covariate are $OR_{U/L}$ times those at the lower quartile for that covariate.

	Odds ratio _{U/L}	Data LQ	Data UQ
Continuous variables	· ·		
Distance public dump (m)	0.44 (0.27, 0.63)	32.7	90.6
Log income (reias/month)	0.64 (0.30, 1.09)	$\log(1)$	log(728)
Cumulative rainfall (m)	4.12 (2.45, 6.33)	0.56	1.70
Age (years)	13.28 (5.38, 27.01)	15	42
Rat linear predictor	1.03 (1.00, 1.07)	0.033	0.214
Binary variables	Odds ratio _{1/0}		
Male / Female	3.78 (1.96, 6.33)		

Practical implications

Target interventions to decrease leptospirosis risk:

- why does increasing rainfall increase risk?
- why are men and young people more at risk?
- increase incomes?
- remove or cover public dumps
- decrease rat numbers

Target interventions to reduce rat numbers:

- cover open sewers
- remove or cover public dumps
- rodenticide campaigns targeting rat hotspots

Current and future work

- Incorporate uncertainty in human infection status
- Extend model to more campaigns worth of data when available
 - Add campaign as a random effect
 - Add temporal correlations
- Formal model selection

Thank you for your attention!

Contact: p.miller@lancaster.ac.uk

Poppy Miller (Lancaster University) Identification of hotspots of rat abundance

April 16, 2018 16 / 22

Significant covariate effects: leptospirosis model

Parameter	Media	n (CI)	Prob <0	Prob >0
Dist public dump (km)	-14.31	(-21.69, -7.51)		1.000
Total rainfall (m)	1.24	(0.85, 1.66)	1.000	
Age	0.18	(0.12, 0.23)	1.000	
Age $>$ 30 years	-0.18	(-0.25, -0.11)		1.000
$Sex\ (male=1)$	1.33	(0.78, 1.90)	1.000	
Log income	0.25	(0.02, 0.49)	0.982	
Log income	-0.73	(-1.24,-0.20)		0.997
>40 reais/month				
Rat linear predictor	0.18	(-0.02, 0.38)	0.966	
σ (individual level	1.72	(1.13, 2.31)		
random effect)				

Odds ratios: leptospirosis model continuous variables

Interpretation: The odds of being infected with leptospirosis for a person with a covariate value at the upper quartile for that covariate are $OR_{U/L}$ times those at the lower quartile for that covariate.

	Odds ratio _{U/L}	Data LQ	Data UQ
Ground cover % soil	1.09 (0.70, 1.56)	3	37
Ground cover % vegetation	1.15 (0.95, 1.38)	0	17
Cumulative rainfall (m)	4.12 (2.45, 6.33)	0.56	1.70
Distance public dump (m)	0.44 (0.27, 0.63)	32.7	90.6
Distance open sewer (m)	1.12 (0.97, 1.29)	6.2	16.9
Age (years)	13.28 (5.38, 27.01)	15	42
Log income (reias/month)	0.64 (0.30, 1.09)	$\log(1)$	log(728)
Rat linear predictor	1.03 (1.00, 1.07)	0.033	0.214

Odds ratios: leptospirosis model binary variables

	Odds ratio _{1/0}
Male / Female	3.78 (1.96, 6.33)
Ethnicity 2 / Ethnicity 1	1.57 (0.28, 4.62)
Ethnicity 3 / Ethnicity 1	1.64 (0.34, 4.87)
Ethnicity 4 and 7 / Ethnicity 1	3.77 (0.00, 54.66)
Literate / Illiterate	0.89 (0.45, 1.48)
Sewer exposed $/$ not exposed	1.54 (0.81, 2.58)
Mud exposed / not exposed	1.24 (0.64, 2.07)
Flood exposed / not exposed	1.00 (0.51, 1.63)

Covariate effects: rat model

Parameter	Median	(CI)	Prob <0	Prob >
Intercept	-3.06	(-3.52, -2.61)		1.000
Area soil	0.87	(-0.15, 2.00)	0.943	
Area soil squared	-3.76	(-6.89, -1.04)		0.994
Area veg 5m	-0.52	(-1.28, 0.17)		0.934
Area veg 5m squared	2.42	(0.04, 4.50)	0.984	
Mean rainfall	58.32	(38.14, 80.39)	1.000	
Dist dump	-16.11	(-26.50, -5.45)		0.999
Dist dump >70m	20.52	(6.14, 36.22)	0.998	
Domestic	0.13	(-0.17, 0.39)	0.795	
Dist open sewer	-19.87	(-38.14, -3.29)		0.983
Dist open sewer >40m	51.69	(12.29, 84.97)	0.997	
phi	17.31	(12.85, 22.86)		
sigmasq	2.03	(1.40, 2.71)		
tausq	0.39	(0.08, 0.85)		
		< □ >		

Poppy Miller (Lancaster University)

Identification of hotspots of rat abundance

April 16, 2018 20 / 22

Why the cloglog link?

Boards are marked at rate λ_i (Poisson process):

- *p_i*: probability that the number of rat marks is ≥ 1 in time period
 [0, *T_i*]
- $1 p_i$: Prob (0 marks) in time period $[0, T_i]$ $1 - p_i = \frac{\left\{\int_0^{T_i} \lambda_i dt\right\}^0 e^{-\int_0^{T_i} \lambda_i dt}}{0!} = e^{-\int_0^{T_i} \lambda_i dt} = e^{-\lambda_i T_i}$

Rearrange to get cloglog link function:

$$\log (-\log (1 - p_i)) = \log (\lambda_i T_i)$$

= $\log \lambda_i + \log T_i$
= $d (x_i)' \beta + S (i) + \log T_i$
= η_i

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 三臣 - のへで