
Probability Generating Functions

Joel C. Miller
Institute for Disease Modeling

April 16, 2018

Context

Consider the spread of a disease starting from a single infected
individual in a large population:

I A new disease emerges from some animal reservoir.

I A disease is introduced from some other population.

Focus on early spread, before saturation effects matter.

http://images.math.cnrs.fr/La-probabilite-d-extinction-d-une.html

Context

Consider the spread of a disease starting from a single infected
individual in a large population:

I A new disease emerges from some animal reservoir.

I A disease is introduced from some other population.

Focus on early spread, before saturation effects matter.

http://images.math.cnrs.fr/La-probabilite-d-extinction-d-une.html

Outline

I Quick taste of PGF properties

I Overview of things we can calculate with PGFs (and inference
implications)

I A Python implementation

Probability Generating Functions

Demagickifying PGFs — Alea iacta est

I Consider one infected individual who rolls a normal 6-sided die
to figure out how many to infect.

� � � � 	

Number infected 1 2 3 4 5 6

I Then

µ(x) =
∑

P(i)x i =
1

6
(x + x2 + x3 + x4 + x5 + x6)

encodes the distribution of the infections caused.

Demagickifying PGFs — Alea iacta est

I Consider one infected individual who rolls a normal 6-sided die
to figure out how many to infect.

� � � � 	

Number infected 1 2 3 4 5 6

I Then

µ(x) =
∑

P(i)x i =
1

6
(x + x2 + x3 + x4 + x5 + x6)

encodes the distribution of the infections caused.

Demagickifying PGFs — Alea iacta est

I Consider one infected individual who rolls a normal 6-sided die
to figure out how many to infect.

� � � � 	

Number infected 1 2 3 4 5 6

I Then

µ(x) =
∑

P(i)x i =
1

6
(x + x2 + x3 + x4 + x5 + x6)

encodes the distribution of the infections caused.

PGF for multiple infectors

I Now consider two such individuals. The PGF of the combined
number of infections caused

is the product [µ(x)]2.

� � � � 	

� 2 3 4 5 6 7

� 3 4 5 6 7 8

� 4 5 6 7 8 9

� 5 6 7 8 9 10

	 6 7 8 9 10 11

 7 8 9 10 11 12

Coefficient of x5 is 4/36

x1/6 x2/6 x3/6 x4/6 x5/6 x6/6

x1/6 x2/36 x3/36 x4/36 x5/36 x6/36 x7/36

x2/6 x3/36 x4/36 x5/36 x6/36 x7/36 x8/36

x3/6 x4/36 x5/36 x6/36 x7/36 x8/36 x9/36

x4/6 x5/36 x6/36 x7/36 x8/36 x9/36 x10/36

x5/6 x6/36 x7/36 x8/36 x9/36 x10/36 x11/36

x6/6 x7/36 x8/36 x9/36 x10/36 x11/36 x12/36

Coefficient of x5 is 4/36
I The PGF of the number of infections caused by n individuals

is given by [µ(x)]n.

PGF for multiple infectors

I Now consider two such individuals. The PGF of the combined
number of infections caused is the product [µ(x)]2.

� � � � 	

� 2 3 4 5 6 7

� 3 4 5 6 7 8

� 4 5 6 7 8 9

� 5 6 7 8 9 10

	 6 7 8 9 10 11

 7 8 9 10 11 12

Coefficient of x5 is 4/36

x1/6 x2/6 x3/6 x4/6 x5/6 x6/6

x1/6 x2/36 x3/36 x4/36 x5/36 x6/36 x7/36

x2/6 x3/36 x4/36 x5/36 x6/36 x7/36 x8/36

x3/6 x4/36 x5/36 x6/36 x7/36 x8/36 x9/36

x4/6 x5/36 x6/36 x7/36 x8/36 x9/36 x10/36

x5/6 x6/36 x7/36 x8/36 x9/36 x10/36 x11/36

x6/6 x7/36 x8/36 x9/36 x10/36 x11/36 x12/36

Coefficient of x5 is 4/36

I The PGF of the number of infections caused by n individuals
is given by [µ(x)]n.

PGF for multiple infectors

I Now consider two such individuals. The PGF of the combined
number of infections caused is the product [µ(x)]2.

� � � � 	

� 2 3 4 5 6 7

� 3 4 5 6 7 8

� 4 5 6 7 8 9

� 5 6 7 8 9 10

	 6 7 8 9 10 11

 7 8 9 10 11 12

Coefficient of x5 is 4/36

x1/6 x2/6 x3/6 x4/6 x5/6 x6/6

x1/6 x2/36 x3/36 x4/36 x5/36 x6/36 x7/36

x2/6 x3/36 x4/36 x5/36 x6/36 x7/36 x8/36

x3/6 x4/36 x5/36 x6/36 x7/36 x8/36 x9/36

x4/6 x5/36 x6/36 x7/36 x8/36 x9/36 x10/36

x5/6 x6/36 x7/36 x8/36 x9/36 x10/36 x11/36

x6/6 x7/36 x8/36 x9/36 x10/36 x11/36 x12/36

Coefficient of x5 is 4/36
I The PGF of the number of infections caused by n individuals

is given by [µ(x)]n.

PGF for multiple generations

PGF for multiple generations
I Starting with one infected individual, what do we expect after

2 generations of transmission?

I Assuming first person rolls a particular value, we write

�(x) = µ(x),

�(x) = [µ(x)]2,

...

(x) = [µ(x)]6

I For the second generation of transmission we have each with
equal probability

1

6�
(x) +

1

6�
(x) + · · ·+ 1

6

(x) =

∑ 1

6
[µ(x)]i

= µ(µ(x))

I The big takeaway is that composition of PGFs shows up
naturally in getting from one generation to the next.

PGF for multiple generations
I Starting with one infected individual, what do we expect after

2 generations of transmission?
I Assuming first person rolls a particular value, we write

�(x) = µ(x),

�(x) = [µ(x)]2,

...

(x) = [µ(x)]6

I For the second generation of transmission we have each with
equal probability

1

6�
(x) +

1

6�
(x) + · · ·+ 1

6

(x) =

∑ 1

6
[µ(x)]i

= µ(µ(x))

I The big takeaway is that composition of PGFs shows up
naturally in getting from one generation to the next.

PGF for multiple generations
I Starting with one infected individual, what do we expect after

2 generations of transmission?
I Assuming first person rolls a particular value, we write

�(x) = µ(x),

�(x) = [µ(x)]2,

...

(x) = [µ(x)]6

I For the second generation of transmission we have each with
equal probability

1

6�
(x) +

1

6�
(x) + · · ·+ 1

6

(x) =

∑ 1

6
[µ(x)]i

= µ(µ(x))

I The big takeaway is that composition of PGFs shows up
naturally in getting from one generation to the next.

PGF for multiple generations
I Starting with one infected individual, what do we expect after

2 generations of transmission?
I Assuming first person rolls a particular value, we write

�(x) = µ(x),

�(x) = [µ(x)]2,

...

(x) = [µ(x)]6

I For the second generation of transmission we have each with
equal probability

1

6�
(x) +

1

6�
(x) + · · ·+ 1

6

(x) =

∑ 1

6
[µ(x)]i

= µ(µ(x))

I The big takeaway is that composition of PGFs shows up
naturally in getting from one generation to the next.

PGF for multiple generations
I Starting with one infected individual, what do we expect after

2 generations of transmission?
I Assuming first person rolls a particular value, we write

�(x) = µ(x),

�(x) = [µ(x)]2,

...

(x) = [µ(x)]6

I For the second generation of transmission we have each with
equal probability

1

6�
(x) +

1

6�
(x) + · · ·+ 1

6

(x) =

∑ 1

6
[µ(x)]i

= µ(µ(x))

I The big takeaway is that composition of PGFs shows up
naturally in getting from one generation to the next.

Other distributions

I Assume each individual causes a Poisson-distributed number
of infections with rate parameter R0.

µ(x) =
∞∑
i=0

P(i)x i =
∞∑
i=0

R0
ie−R0

i !
x i

= e−R0

∞∑
i=0

(R0x)i

i !
= e−R0eR0x

= eR0(x−1)

I Many commonly-used distributions have compact, closed-form
PGFs.

Other distributions

I Assume each individual causes a Poisson-distributed number
of infections with rate parameter R0.

µ(x) =
∞∑
i=0

P(i)x i =
∞∑
i=0

R0
ie−R0

i !
x i

= e−R0

∞∑
i=0

(R0x)i

i !
= e−R0eR0x

= eR0(x−1)

I Many commonly-used distributions have compact, closed-form
PGFs.

Other distributions

I Assume each individual causes a Poisson-distributed number
of infections with rate parameter R0.

µ(x) =
∞∑
i=0

P(i)x i =
∞∑
i=0

R0
ie−R0

i !
x i

= e−R0

∞∑
i=0

(R0x)i

i !
= e−R0eR0x

= eR0(x−1)

I Many commonly-used distributions have compact, closed-form
PGFs.

Other distributions

I Assume each individual causes a Poisson-distributed number
of infections with rate parameter R0.

µ(x) =
∞∑
i=0

P(i)x i =
∞∑
i=0

R0
ie−R0

i !
x i

= e−R0

∞∑
i=0

(R0x)i

i !
= e−R0eR0x

= eR0(x−1)

I Many commonly-used distributions have compact, closed-form
PGFs.

Making predictions from the PGF

I The PGF of the number infected in generation g is µ[g](x)
where the superscript denotes function composition
µ(µ(µ(· · · (x))))).

I The extinction probability at generation g can be found by
setting x = 0.

µ[g](0) = P(0|g) + P(1|g)0 + P(2|g)02 + · · · = P(0|g)

I For µ(x) = (x + · · ·+ x6)/6, this gives 0.

I But for the Poisson distribution we get something different. . .

Making predictions from the PGF

I The PGF of the number infected in generation g is µ[g](x)
where the superscript denotes function composition
µ(µ(µ(· · · (x))))).

I The extinction probability at generation g can be found by
setting x = 0.

µ[g](0) = P(0|g) + P(1|g)0 + P(2|g)02 + · · · = P(0|g)

I For µ(x) = (x + · · ·+ x6)/6, this gives 0.

I But for the Poisson distribution we get something different. . .

Making predictions from the PGF

I The PGF of the number infected in generation g is µ[g](x)
where the superscript denotes function composition
µ(µ(µ(· · · (x))))).

I The extinction probability at generation g can be found by
setting x = 0.

µ[g](0) = P(0|g) + P(1|g)0 + P(2|g)02 + · · · = P(0|g)

I For µ(x) = (x + · · ·+ x6)/6, this gives 0.

I But for the Poisson distribution we get something different. . .

Making predictions from the PGF

I The PGF of the number infected in generation g is µ[g](x)
where the superscript denotes function composition
µ(µ(µ(· · · (x))))).

I The extinction probability at generation g can be found by
setting x = 0.

µ[g](0) = P(0|g) + P(1|g)0 + P(2|g)02 + · · · = P(0|g)

I For µ(x) = (x + · · ·+ x6)/6, this gives 0.

I But for the Poisson distribution we get something different. . .

Poisson
R0 =
0.75

0.0 0.2 0.4 0.6 0.8 1.0

αg

0.0

0.2

0.4

0.6

0.8

1.0

α
g
+

1

y = µ(x)

0 2 4 6 8 10 12 14

Generation

E
xt

in
ct

io
n

p
ro

b
ab

ili
ty

N = 100

N = 1000

Poisson
R0 =
2

0.0 0.2 0.4 0.6 0.8 1.0

αg

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

α
g
+

1

y = µ(x)

0 2 4 6 8 10 12 14

Generation

E
xt

in
ct

io
n

p
ro

b
ab

ili
ty N = 100

N = 1000

Black magic

Probability of 0 can be found by iterating from x = 0

I If only there were an efficient way to calculate the coefficient
of arbitrary x i for µ[g](x). . .

I Given a PGF f (x), we can quickly
approximate the coefficient of xn

in its Taylor Series by

rn ≈
1

M

M∑
m=0

f (e2πim/M)(
e2πim/M

)n

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

I This is really “just” a result from Complex Analysis about
calculating residues through contour integration.

Black magic

Probability of 0 can be found by iterating from x = 0

I If only there were an efficient way to calculate the coefficient
of arbitrary x i for µ[g](x). . .

I Given a PGF f (x), we can quickly
approximate the coefficient of xn

in its Taylor Series by

rn ≈
1

M

M∑
m=0

f (e2πim/M)(
e2πim/M

)n

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

I This is really “just” a result from Complex Analysis about
calculating residues through contour integration.

Black magic

Probability of 0 can be found by iterating from x = 0

I If only there were an efficient way to calculate the coefficient
of arbitrary x i for µ[g](x). . .

I Given a PGF f (x), we can quickly
approximate the coefficient of xn

in its Taylor Series by

rn ≈
1

M

M∑
m=0

f (e2πim/M)(
e2πim/M

)n

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

I This is really “just” a result from Complex Analysis about
calculating residues through contour integration.

Black magic

Probability of 0 can be found by iterating from x = 0

I If only there were an efficient way to calculate the coefficient
of arbitrary x i for µ[g](x). . .

I Given a PGF f (x), we can quickly
approximate the coefficient of xn

in its Taylor Series by

rn ≈
1

M

M∑
m=0

f (e2πim/M)(
e2πim/M

)n
1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

I This is really “just” a result from Complex Analysis about
calculating residues through contour integration.

Black magic

Probability of 0 can be found by iterating from x = 0

I If only there were an efficient way to calculate the coefficient
of arbitrary x i for µ[g](x). . .

I Given a PGF f (x), we can quickly
approximate the coefficient of xn

in its Taylor Series by

rn ≈
1

M

M∑
m=0

f (e2πim/M)(
e2πim/M

)n
1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

I This is really “just” a result from Complex Analysis about
calculating residues through contour integration.

Going further

I We can also calculate the number of active and completed
infections at generation g .

I Let Πg (y , z) =
∑

pir (g)y iz r be the PGF for having i active
infections and r completed infections at generation g .

I Then Πg (y , z) satisfies

Πg (y , z) =

{
y g = 0

zµ(Πg−1(y , z)) g > 0

I Similar contour integrations works.

Going further

I We can also calculate the number of active and completed
infections at generation g .

I Let Πg (y , z) =
∑

pir (g)y iz r be the PGF for having i active
infections and r completed infections at generation g .

I Then Πg (y , z) satisfies

Πg (y , z) =

{
y g = 0

zµ(Πg−1(y , z)) g > 0

I Similar contour integrations works.

Going further

I We can also calculate the number of active and completed
infections at generation g .

I Let Πg (y , z) =
∑

pir (g)y iz r be the PGF for having i active
infections and r completed infections at generation g .

I Then Πg (y , z) satisfies

Πg (y , z) =

{
y g = 0

zµ(Πg−1(y , z)) g > 0

I Similar contour integrations works.

Going further

I We can also calculate the number of active and completed
infections at generation g .

I Let Πg (y , z) =
∑

pir (g)y iz r be the PGF for having i active
infections and r completed infections at generation g .

I Then Πg (y , z) satisfies

Πg (y , z) =

{
y g = 0

zµ(Πg−1(y , z)) g > 0

I Similar contour integrations works.

Comparison with simulation (Poisson, third generation)

R0 = 0.75

0.00

0.25

0.50
Observation Prediction

0 5 10 15 20 25 30

Completed infections

0

5

10

15

20

25

30

A
ct

iv
e

in
fe

ct
io

n
s

0.0 0.5 0 5 10 15 20 25 30

Completed infections

A
ct

iv
e

in
fe

ct
io

n
s

0.0 0.5

−12

−10

−8

−6

−4

−2

0

log10(probability)

R0 = 2

0.0

0.1

Observation Prediction

0 5 10 15 20 25 30

Completed infections

0

5

10

15

20

25

30

A
ct

iv
e

in
fe

ct
io

n
s

0.0 0.2 0 5 10 15 20 25 30

Completed infections

A
ct

iv
e

in
fe

ct
io

n
s

0.0 0.2

−12

−10

−8

−6

−4

−2

0

log10(probability)

Final sizes

It can be shown (the proof is beautiful) that P(Final size = j)
equals 1/j times the coefficient of x j−1 in [µ(x)]j .

Distribution PGF Probability of j infections

Poisson eR0(x−1) (jR0)j−1

j! e−jR0

Uniform xR0

{
1 j = 1, R0 = 0

0 otherwise

Binomial (q + px)n 1
j

(nj
j−1
)
pj−1qnj−j+1

Geometric p/(1− qx) 1
j

(2j−2
j−1
)
pjqj−1

Negative Binomial
(

q
1−px

)r
1
j

(rj+j−2
j−1

)
qrjpj−1

Final sizes

It can be shown (the proof is beautiful) that P(Final size = j)
equals 1/j times the coefficient of x j−1 in [µ(x)]j .

Distribution PGF Probability of j infections

Poisson eR0(x−1) (jR0)j−1

j! e−jR0

Uniform xR0

{
1 j = 1, R0 = 0

0 otherwise

Binomial (q + px)n 1
j

(nj
j−1
)
pj−1qnj−j+1

Geometric p/(1− qx) 1
j

(2j−2
j−1
)
pjqj−1

Negative Binomial
(

q
1−px

)r
1
j

(rj+j−2
j−1

)
qrjpj−1

Inference

I Given an assumed offspring distribution type (often Negative
Binomial), a prior on the parameters of the distribution, and
observed outbreak sizes:

I Bayesian inference allows us to infer improved parameter
values.

I See:
I Downgrading disease transmission risk estimates using terminal

importations bioRxiv
I Inference of R0 and Transmission Heterogeneity from the Size

Distribution of Stuttering Chains. PLoS One
I Characterizing the Transmission Potential of Zoonotic

Infections from Minor Outbreaks. PLoS Comp Bio

https://doi.org/10.1101/265942
https://doi.org/10.1101/265942
https://doi.org/10.1371/journal.pcbi.1002993
https://doi.org/10.1371/journal.pcbi.1002993
https://doi.org/10.1371/journal.pcbi.1004154
https://doi.org/10.1371/journal.pcbi.1004154

Inference

I Given an assumed offspring distribution type (often Negative
Binomial), a prior on the parameters of the distribution, and
observed outbreak sizes:

I Bayesian inference allows us to infer improved parameter
values.

I See:
I Downgrading disease transmission risk estimates using terminal

importations bioRxiv
I Inference of R0 and Transmission Heterogeneity from the Size

Distribution of Stuttering Chains. PLoS One
I Characterizing the Transmission Potential of Zoonotic

Infections from Minor Outbreaks. PLoS Comp Bio

https://doi.org/10.1101/265942
https://doi.org/10.1101/265942
https://doi.org/10.1371/journal.pcbi.1002993
https://doi.org/10.1371/journal.pcbi.1002993
https://doi.org/10.1371/journal.pcbi.1004154
https://doi.org/10.1371/journal.pcbi.1004154

Inference

I Given an assumed offspring distribution type (often Negative
Binomial), a prior on the parameters of the distribution, and
observed outbreak sizes:

I Bayesian inference allows us to infer improved parameter
values.

I See:
I Downgrading disease transmission risk estimates using terminal

importations bioRxiv
I Inference of R0 and Transmission Heterogeneity from the Size

Distribution of Stuttering Chains. PLoS One
I Characterizing the Transmission Potential of Zoonotic

Infections from Minor Outbreaks. PLoS Comp Bio

https://doi.org/10.1101/265942
https://doi.org/10.1101/265942
https://doi.org/10.1371/journal.pcbi.1002993
https://doi.org/10.1371/journal.pcbi.1002993
https://doi.org/10.1371/journal.pcbi.1004154
https://doi.org/10.1371/journal.pcbi.1004154

Python Implementation

I have created a Python package that does most of this:
https://github.com/joelmiller/Invasion_PGF

(currently not compatible with python 2.x — just need to test and
push new version to github)

https://github.com/joelmiller/Invasion_PGF

Example

>>> import Invasion_PGF as pgf

>>> def mu(x):

... return (1. + x + x**2 + x**3)/4

...

>>> pgf.R0(mu)

1.5000001241105565

>>> #probabilities of extinction up to generation 3

>>> pgf.extinction_prob(mu, 3, intermediate_values = True)

array([0. , 0.25 , 0.33203125, 0.36972018])

>>> #possible states in generation 3

>>> pgf.active_infections(mu, 3, 5)

array([0.36972018, 0.05259718, 0.07178445, 0.09609134, 0.07393309])

>>> pgf.completed_infections(mu, 3, 5)

array([-2.04281037e-17, 2.50000000e-01, 6.25000000e-02,

7.81250000e-02, 9.76562500e-02])

>>> pgf.active_and_completed(mu, 3, 5, 5)

array([[0. , 0.25 , 0.0625 , 0.03125 , 0.015625],

[0. , 0. , 0. , 0.015625 , 0.015625],

[0. , 0. , 0. , 0.015625 , 0.01953125],

[0. , 0. , 0. , 0.015625 , 0.0234375],

[0. , 0. , 0. , 0. , 0.01171875]])

Summary

I PGFs allow us to magically calculate a lot of properties of
small outbreaks.

I We’ve implemented many of the relevant functions in python.

I Detailed tutorial (effectively a short textbook) available at
https://arxiv.org/abs/1803.05136

https://arxiv.org/abs/1803.05136

