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Context

Consider the spread of a disease starting from a single infected
individual in a large population:

I A new disease emerges from some animal reservoir.

I A disease is introduced from some other population.

Focus on early spread, before saturation effects matter.

http://images.math.cnrs.fr/La-probabilite-d-extinction-d-une.html
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Outline

I Quick taste of PGF properties

I Overview of things we can calculate with PGFs (and inference
implications)

I A Python implementation
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Demagickifying PGFs — Alea iacta est

I Consider one infected individual who rolls a normal 6-sided die
to figure out how many to infect.

� � � � 	 


Number infected 1 2 3 4 5 6

I Then

µ(x) =
∑

P(i)x i =
1

6
(x + x2 + x3 + x4 + x5 + x6)

encodes the distribution of the infections caused.
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PGF for multiple infectors

I Now consider two such individuals. The PGF of the combined
number of infections caused

is the product [µ(x)]2.
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Coefficient of x5 is 4/36
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Coefficient of x5 is 4/36
I The PGF of the number of infections caused by n individuals

is given by [µ(x)]n.
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PGF for multiple generations
I Starting with one infected individual, what do we expect after

2 generations of transmission?

I Assuming first person rolls a particular value, we write

�(x) = µ(x),

�(x) = [µ(x)]2,

...


(x) = [µ(x)]6

I For the second generation of transmission we have each with
equal probability

1

6�
(x) +

1

6�
(x) + · · ·+ 1

6

(x) =

∑ 1

6
[µ(x)]i

= µ(µ(x))

I The big takeaway is that composition of PGFs shows up
naturally in getting from one generation to the next.
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Other distributions

I Assume each individual causes a Poisson-distributed number
of infections with rate parameter R0.

µ(x) =
∞∑
i=0

P(i)x i =
∞∑
i=0

R0
ie−R0

i !
x i

= e−R0

∞∑
i=0

(R0x)i

i !
= e−R0eR0x

= eR0(x−1)

I Many commonly-used distributions have compact, closed-form
PGFs.
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Making predictions from the PGF

I The PGF of the number infected in generation g is µ[g ](x)
where the superscript denotes function composition
µ(µ(µ(· · · (x))))).

I The extinction probability at generation g can be found by
setting x = 0.

µ[g ](0) = P(0|g) + P(1|g)0 + P(2|g)02 + · · · = P(0|g)

I For µ(x) = (x + · · ·+ x6)/6, this gives 0.

I But for the Poisson distribution we get something different. . .



Making predictions from the PGF

I The PGF of the number infected in generation g is µ[g ](x)
where the superscript denotes function composition
µ(µ(µ(· · · (x))))).

I The extinction probability at generation g can be found by
setting x = 0.

µ[g ](0) = P(0|g) + P(1|g)0 + P(2|g)02 + · · · = P(0|g)

I For µ(x) = (x + · · ·+ x6)/6, this gives 0.

I But for the Poisson distribution we get something different. . .



Making predictions from the PGF

I The PGF of the number infected in generation g is µ[g ](x)
where the superscript denotes function composition
µ(µ(µ(· · · (x))))).

I The extinction probability at generation g can be found by
setting x = 0.

µ[g ](0) = P(0|g) + P(1|g)0 + P(2|g)02 + · · · = P(0|g)

I For µ(x) = (x + · · ·+ x6)/6, this gives 0.

I But for the Poisson distribution we get something different. . .



Making predictions from the PGF

I The PGF of the number infected in generation g is µ[g ](x)
where the superscript denotes function composition
µ(µ(µ(· · · (x))))).

I The extinction probability at generation g can be found by
setting x = 0.

µ[g ](0) = P(0|g) + P(1|g)0 + P(2|g)02 + · · · = P(0|g)

I For µ(x) = (x + · · ·+ x6)/6, this gives 0.

I But for the Poisson distribution we get something different. . .



Poisson
R0 =
0.75

0.0 0.2 0.4 0.6 0.8 1.0

αg

0.0

0.2

0.4

0.6

0.8

1.0

α
g
+

1

y = µ(x)

0 2 4 6 8 10 12 14

Generation

E
xt

in
ct

io
n

p
ro

b
ab

ili
ty

N = 100

N = 1000

Poisson
R0 =
2

0.0 0.2 0.4 0.6 0.8 1.0

αg

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

α
g
+

1

y = µ(x)

0 2 4 6 8 10 12 14

Generation

E
xt

in
ct

io
n

p
ro

b
ab

ili
ty N = 100

N = 1000



Black magic

Probability of 0 can be found by iterating from x = 0

I If only there were an efficient way to calculate the coefficient
of arbitrary x i for µ[g ](x). . .

I Given a PGF f (x), we can quickly
approximate the coefficient of xn

in its Taylor Series by

rn ≈
1

M

M∑
m=0

f (e2πim/M)(
e2πim/M

)n
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I This is really “just” a result from Complex Analysis about
calculating residues through contour integration.
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Going further

I We can also calculate the number of active and completed
infections at generation g .

I Let Πg (y , z) =
∑

pir (g)y iz r be the PGF for having i active
infections and r completed infections at generation g .

I Then Πg (y , z) satisfies

Πg (y , z) =

{
y g = 0

zµ(Πg−1(y , z)) g > 0

I Similar contour integrations works.
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Comparison with simulation (Poisson, third generation)
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Final sizes

It can be shown (the proof is beautiful) that P(Final size = j)
equals 1/j times the coefficient of x j−1 in [µ(x)]j .

Distribution PGF Probability of j infections

Poisson eR0(x−1) (jR0)j−1

j! e−jR0

Uniform xR0

{
1 j = 1, R0 = 0

0 otherwise

Binomial (q + px)n 1
j

( nj
j−1
)
pj−1qnj−j+1

Geometric p/(1− qx) 1
j

(2j−2
j−1
)
pjqj−1

Negative Binomial
(

q
1−px

)r
1
j

(rj+j−2
j−1

)
qrjpj−1
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Inference

I Given an assumed offspring distribution type (often Negative
Binomial), a prior on the parameters of the distribution, and
observed outbreak sizes:

I Bayesian inference allows us to infer improved parameter
values.

I See:
I Downgrading disease transmission risk estimates using terminal

importations bioRxiv
I Inference of R0 and Transmission Heterogeneity from the Size

Distribution of Stuttering Chains. PLoS One
I Characterizing the Transmission Potential of Zoonotic

Infections from Minor Outbreaks. PLoS Comp Bio

https://doi.org/10.1101/265942
https://doi.org/10.1101/265942
https://doi.org/10.1371/journal.pcbi.1002993
https://doi.org/10.1371/journal.pcbi.1002993
https://doi.org/10.1371/journal.pcbi.1004154
https://doi.org/10.1371/journal.pcbi.1004154
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Python Implementation

I have created a Python package that does most of this:
https://github.com/joelmiller/Invasion_PGF

(currently not compatible with python 2.x — just need to test and
push new version to github)

https://github.com/joelmiller/Invasion_PGF


Example

>>> import Invasion_PGF as pgf

>>> def mu(x):

... return (1. + x + x**2 + x**3)/4

...

>>> pgf.R0(mu)

1.5000001241105565

>>> #probabilities of extinction up to generation 3

>>> pgf.extinction_prob(mu, 3, intermediate_values = True)

array([ 0. , 0.25 , 0.33203125, 0.36972018])

>>> #possible states in generation 3

>>> pgf.active_infections(mu, 3, 5)

array([ 0.36972018, 0.05259718, 0.07178445, 0.09609134, 0.07393309])

>>> pgf.completed_infections(mu, 3, 5)

array([ -2.04281037e-17, 2.50000000e-01, 6.25000000e-02,

7.81250000e-02, 9.76562500e-02])

>>> pgf.active_and_completed(mu, 3, 5, 5)

array([[ 0. , 0.25 , 0.0625 , 0.03125 , 0.015625 ],

[ 0. , 0. , 0. , 0.015625 , 0.015625 ],

[ 0. , 0. , 0. , 0.015625 , 0.01953125],

[ 0. , 0. , 0. , 0.015625 , 0.0234375 ],

[ 0. , 0. , 0. , 0. , 0.01171875]])



Summary

I PGFs allow us to magically calculate a lot of properties of
small outbreaks.

I We’ve implemented many of the relevant functions in python.

I Detailed tutorial (effectively a short textbook) available at
https://arxiv.org/abs/1803.05136

https://arxiv.org/abs/1803.05136

