Probability Generating Functions

Joel C. Miller Institute for Disease Modeling

April 16, 2018

Context

Consider the spread of a disease starting from a single infected individual in a large population:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- A new disease emerges from some animal reservoir.
- A disease is introduced from some other population.

Focus on early spread, before saturation effects matter.

Context

Consider the spread of a disease starting from a single infected individual in a large population:

- A new disease emerges from some animal reservoir.
- A disease is introduced from some other population.

Focus on early spread, before saturation effects matter.

http://images.math.cnrs.fr/La-probabilite-d-extinction-d-une.html

Outline

- Quick taste of PGF properties
- Overview of things we can calculate with PGFs (and inference implications)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A Python implementation

Probability Generating Functions

Replying to @joel_c_miller

Definitely happy to follow #ProbabilityGeneratingFunctions ! They rock, though I still haven't quite got past the 'this is just weird magic' stage Demagickifying PGFs — Alea iacta est

 Consider one infected individual who rolls a normal 6-sided die to figure out how many to infect.

(ロ)、(型)、(E)、(E)、 E) の(の)

Demagickifying PGFs — Alea iacta est

 Consider one infected individual who rolls a normal 6-sided die to figure out how many to infect.

(ロ)、(型)、(E)、(E)、 E) の(の)

	•		٠.	•••	$\cdot \cdot$	•••
Number infected	1	2	3	4	5	6

Demagickifying PGFs — Alea iacta est

 Consider one infected individual who rolls a normal 6-sided die to figure out how many to infect.

	•		٠.	••		•••
Number infected	1	2	3	4	5	6

Then

$$\mu(x) = \sum P(i)x^{i} = \frac{1}{6}(x + x^{2} + x^{3} + x^{4} + x^{5} + x^{6})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

encodes the distribution of the infections caused.

PGF for multiple infectors

Now consider two such individuals. The PGF of the combined number of infections caused

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

	•		۰.		\vdots	::
•	2	3	4	5	6	7
	3	4	5	6	7	8
·.	4	5	6	7	8	9
	5	6	7	8	9	10
\vdots	6	7	8	9	10	11
	7	8	9	10	11	12

Coefficient of x^5 is 4/36

PGF for multiple infectors

Now consider two such individuals. The PGF of the combined number of infections caused is the product [µ(x)]².

	•		••			
•	2	3	4	5	6	7
	3	4	5	6	7	8
۰.	4	5	6	7	8	9
::	5	6	7	8	9	10
:::	6	7	8	9	10	11
::	7	8	9	10	11	12

_		x ¹ /6	x ² /6	$x^{3}/6$	$x^{4}/6$	x ⁵ /6	x ⁶ /6
	x ¹ /6	$x^2/36$	x ³ /36	x ⁴ /36	x ⁵ /36	x ⁶ /36	x ⁷ /36
	$x^{2}/6$	$x^{3}/36$	x ⁴ /36	x ⁵ /36	x ⁶ /36	x ⁷ /36	x ⁸ /36
	<i>x</i> ³ /6	$x^4/36$	x ⁵ /36	x ⁶ /36	x ⁷ /36	x ⁸ /36	x ⁹ /36
	$x^{4}/6$	x ⁵ /36	x ⁶ /36	$x^{7}/36$	x ⁸ /36	x ⁹ /36	x ¹⁰ /36
	$x^{5}/6$	x ⁶ /36	x ⁷ /36	x ⁸ /36	x ⁹ /36	x ¹⁰ /36	x ¹¹ /36
	x ⁶ /6	x ⁷ /36	x ⁸ /36	x ⁹ /36	x ¹⁰ /36	x ¹¹ /36	$x^{12}/36$

Coefficient of x^5 is 4/36

Coefficient of x^5 is 4/36

PGF for multiple infectors

Now consider two such individuals. The PGF of the combined number of infections caused is the product $[\mu(x)]^2$.

	•		••		:•:	::
•	2	3	4	5	6	7
	3	4	5	6	7	8
۰.	4	5	6	7	8	9
::	5	6	7	8	9	10
:::	6	7	8	9	10	11
::	7	8	9	10	11	12

	x ¹ /6	$x^{2}/6$	$x^{3}/6$	x ⁴ /6	x ⁵ /6	x ⁶ /6
x ¹ /6	$x^2/36$	x ³ /36	x ⁴ /36	x ⁵ /36	x ⁶ /36	x ⁷ /36
$x^{2}/6$	$x^{3}/36$	x ⁴ /36	x ⁵ /36	x ⁶ /36	x ⁷ /36	x ⁸ /36
$x^{3}/6$	x ⁴ /36	x ⁵ /36	x ⁶ /36	x ⁷ /36	x ⁸ /36	x ⁹ /36
$x^{4}/6$	x ⁵ /36	x ⁶ /36	$x^{7}/36$	x ⁸ /36	x ⁹ /36	x ¹⁰ /36
$x^{5}/6$	x ⁶ /36	$x^{7}/36$	x ⁸ /36	x ⁹ /36	x ¹⁰ /36	x ¹¹ /36
x ⁶ /6	x ⁷ /36	x ⁸ /36	x ⁹ /36	x ¹⁰ /36	x ¹¹ /36	x ¹² /36

Coefficient of x^5 is 4/36 Coefficient of x^5 is 4/36

▶ The PGF of the number of infections caused by *n* individuals is given by $[\mu(x)]^n$.

・ロト・日本・日本・日本・日本・日本

Starting with one infected individual, what do we expect after 2 generations of transmission?

- Starting with one infected individual, what do we expect after 2 generations of transmission?
- Assuming first person rolls a particular value, we write

$$\mathbf{O}(x) = \mu(x),$$

$$\mathbf{O}(x) = [\mu(x)]^2,$$

$$\vdots$$

$$\mathbf{O}(x) = [\mu(x)]^6$$

- Starting with one infected individual, what do we expect after 2 generations of transmission?
- Assuming first person rolls a particular value, we write

$$\mathbf{O}(x) = \mu(x),$$

$$\mathbf{O}(x) = [\mu(x)]^2,$$

$$\vdots$$

$$\mathbf{O}(x) = [\mu(x)]^6$$

 For the second generation of transmission we have each with equal probability

$$\frac{1}{6}$$
: $(x) + \frac{1}{6}$: $(x) + \dots + \frac{1}{6}$: $(x) = \sum \frac{1}{6} [\mu(x)]^{i}$

- Starting with one infected individual, what do we expect after 2 generations of transmission?
- Assuming first person rolls a particular value, we write

$$\mathbf{O}(x) = \mu(x),$$

$$\mathbf{O}(x) = [\mu(x)]^2,$$

$$\vdots$$

$$\mathbf{O}(x) = [\mu(x)]^6$$

 For the second generation of transmission we have each with equal probability

$$\frac{1}{6} (x) + \frac{1}{6} (x) + \dots + \frac{1}{6} (x) = \sum_{i=1}^{n} \frac{1}{6} [\mu(x)]^{i}$$
$$= \mu(\mu(x))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = ∽○へ⊙

- Starting with one infected individual, what do we expect after 2 generations of transmission?
- Assuming first person rolls a particular value, we write

$$\mathbf{O}(x) = \mu(x),$$

$$\mathbf{O}(x) = [\mu(x)]^2,$$

$$\vdots$$

$$\mathbf{O}(x) = [\mu(x)]^6$$

 For the second generation of transmission we have each with equal probability

$$\frac{1}{6} \cdot \cdot (x) + \frac{1}{6} \cdot \cdot (x) + \dots + \frac{1}{6} \cdot \cdot \cdot (x) = \sum_{i=1}^{n} \frac{1}{6} [\mu(x)]^{i}$$
$$= \mu(\mu(x))$$

► The big takeaway is that composition of PGFs shows up naturally in getting from one generation to the next.

 Assume each individual causes a Poisson-distributed number of infections with rate parameter R₀.

$$\mu(x) = \sum_{i=0}^{\infty} P(i) x^{i} = \sum_{i=0}^{\infty} \frac{\mathcal{R}_{0}{}^{i} e^{-\mathcal{R}_{0}}}{i!} x^{i}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

 Assume each individual causes a Poisson-distributed number of infections with rate parameter R₀.

$$\mu(x) = \sum_{i=0}^{\infty} P(i)x^{i} = \sum_{i=0}^{\infty} \frac{\mathcal{R}_{0}{}^{i}e^{-\mathcal{R}_{0}}}{i!}x^{i}$$
$$= e^{-\mathcal{R}_{0}}\sum_{i=0}^{\infty} \frac{(\mathcal{R}_{0}x)^{i}}{i!} = e^{-\mathcal{R}_{0}}e^{\mathcal{R}_{0}x}$$

 Assume each individual causes a Poisson-distributed number of infections with rate parameter R₀.

$$\mu(x) = \sum_{i=0}^{\infty} P(i)x^i = \sum_{i=0}^{\infty} \frac{\mathcal{R}_0{}^i e^{-\mathcal{R}_0}}{i!} x^i$$
$$= e^{-\mathcal{R}_0} \sum_{i=0}^{\infty} \frac{(\mathcal{R}_0 x)^i}{i!} = e^{-\mathcal{R}_0} e^{\mathcal{R}_0 x}$$
$$= e^{\mathcal{R}_0(x-1)}$$

 Assume each individual causes a Poisson-distributed number of infections with rate parameter R₀.

$$\mu(x) = \sum_{i=0}^{\infty} P(i)x^i = \sum_{i=0}^{\infty} \frac{\mathcal{R}_0{}^i e^{-\mathcal{R}_0}}{i!} x^i$$
$$= e^{-\mathcal{R}_0} \sum_{i=0}^{\infty} \frac{(\mathcal{R}_0 x)^i}{i!} = e^{-\mathcal{R}_0} e^{\mathcal{R}_0 x}$$
$$= e^{\mathcal{R}_0(x-1)}$$

 Many commonly-used distributions have compact, closed-form PGFs.

► The PGF of the number infected in generation g is µ^[g](x) where the superscript denotes function composition µ(µ(µ(···(x))))).

- ► The PGF of the number infected in generation g is µ^[g](x) where the superscript denotes function composition µ(µ(µ(···(x))))).
- The extinction probability at generation g can be found by setting x = 0.

$$\mu^{[g]}(0) = P(0|g) + P(1|g)0 + P(2|g)0^2 + \dots = P(0|g)$$

- ► The PGF of the number infected in generation g is µ^[g](x) where the superscript denotes function composition µ(µ(µ(···(x))))).
- The extinction probability at generation g can be found by setting x = 0.

$$\mu^{[g]}(0) = P(0|g) + P(1|g)0 + P(2|g)0^2 + \dots = P(0|g)$$

• For $\mu(x) = (x + \dots + x^6)/6$, this gives 0.

- ► The PGF of the number infected in generation g is µ^[g](x) where the superscript denotes function composition µ(µ(µ(···(x))))).
- The extinction probability at generation g can be found by setting x = 0.

$$\mu^{[g]}(0) = P(0|g) + P(1|g)0 + P(2|g)0^2 + \dots = P(0|g)$$

- For $\mu(x) = (x + \dots + x^6)/6$, this gives 0.
- But for the Poisson distribution we get something different...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Probability of 0 can be found by iterating from x = 0

Probability of 0 can be found by iterating from x = 0

► If only there were an efficient way to calculate the coefficient of arbitrary xⁱ for µ^[g](x)...

Probability of 0 can be found by iterating from x = 0

If only there were an efficient way to calculate the coefficient of arbitrary xⁱ for µ^[g](x)...

 Given a PGF f(x), we can quickly approximate the coefficient of xⁿ in its Taylor Series by

$$r_n \approx \frac{1}{M} \sum_{m=0}^{M} \frac{f(e^{2\pi i m/M})}{(e^{2\pi i m/M})^n}$$

Probability of 0 can be found by iterating from x = 0

- If only there were an efficient way to calculate the coefficient of arbitrary xⁱ for µ^[g](x)...
- Given a PGF f(x), we can quickly approximate the coefficient of xⁿ in its Taylor Series by

$$r_n \approx rac{1}{M} \sum_{m=0}^{M} rac{f(e^{2\pi i m/M})}{(e^{2\pi i m/M})^n}$$

Probability of 0 can be found by iterating from x = 0

- If only there were an efficient way to calculate the coefficient of arbitrary xⁱ for µ^[g](x)...
- Given a PGF f(x), we can quickly approximate the coefficient of xⁿ in its Taylor Series by

$$r_n \approx rac{1}{M} \sum_{m=0}^M rac{f(e^{2\pi i m/M})}{(e^{2\pi i m/M})^n}$$

 This is really "just" a result from Complex Analysis about calculating residues through contour integration.

▶ We can also calculate the number of active and completed infections at generation *g*.

- ▶ We can also calculate the number of active and completed infections at generation *g*.
- ► Let $\Pi_g(y, z) = \sum p_{ir}(g)y^i z^r$ be the PGF for having *i* active infections and *r* completed infections at generation *g*.

- ▶ We can also calculate the number of active and completed infections at generation *g*.
- ► Let $\Pi_g(y, z) = \sum p_{ir}(g)y^i z^r$ be the PGF for having *i* active infections and *r* completed infections at generation *g*.
- Then Π_g(y, z) satisfies

$$\Pi_g(y,z) = \begin{cases} y & g = 0\\ z\mu(\Pi_{g-1}(y,z)) & g > 0 \end{cases}$$

- ▶ We can also calculate the number of active and completed infections at generation *g*.
- ► Let $\Pi_g(y, z) = \sum p_{ir}(g)y^i z^r$ be the PGF for having *i* active infections and *r* completed infections at generation *g*.
- Then Π_g(y, z) satisfies

$$\Pi_g(y,z) = egin{cases} y & g=0 \ z\mu(\Pi_{g-1}(y,z)) & g>0 \end{cases}$$

Comparison with simulation (Poisson, third generation)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Final sizes

It can be shown (the proof is beautiful) that P(Final size = j) equals 1/j times the coefficient of x^{j-1} in $[\mu(x)]^j$.

Final sizes

It can be shown (the proof is beautiful) that P(Final size = j) equals 1/j times the coefficient of x^{j-1} in $[\mu(x)]^j$.

Distribution	PGF	Probability of <i>j</i> infections
Poisson	$e^{\mathcal{R}_0(x-1)}$	$rac{(j\mathcal{R}_0)^{j-1}}{j!}e^{-j\mathcal{R}_0}$
Uniform	$x^{\mathcal{R}_0}$	$egin{cases} 1 & j=1, \ \mathcal{R}_0=0 \ 0 & ext{otherwise} \end{cases}$
Binomial	$(q + px)^n$	$rac{1}{j} inom{nj}{j-1} p^{j-1} q^{nj-j+1}$
Geometric	p/(1-qx)	$rac{1}{j} {2j-2 \choose j-1} p^j q^{j-1}$
Negative Binomial	$\left(\frac{q}{1-px}\right)^r$	$rac{1}{j} inom{rj+j-2}{j-1} q^{rj} p^{j-1}$

Inference

 Given an assumed offspring distribution type (often Negative Binomial), a prior on the parameters of the distribution, and observed outbreak sizes:

・ロト・日本・モト・モート ヨー うへで

Inference

 Given an assumed offspring distribution type (often Negative Binomial), a prior on the parameters of the distribution, and observed outbreak sizes:

(ロ)、(型)、(E)、(E)、 E) のQの

 Bayesian inference allows us to infer improved parameter values.

Inference

- Given an assumed offspring distribution type (often Negative Binomial), a prior on the parameters of the distribution, and observed outbreak sizes:
- Bayesian inference allows us to infer improved parameter values.
- See:
 - Downgrading disease transmission risk estimates using terminal importations bioRxiv
 - Inference of R0 and Transmission Heterogeneity from the Size Distribution of Stuttering Chains. PLoS One

 Characterizing the Transmission Potential of Zoonotic Infections from Minor Outbreaks. PLoS Comp Bio

Python Implementation

I have created a Python package that does most of this: https://github.com/joelmiller/Invasion_PGF

(currently not compatible with python 2.x — just need to test and push new version to github)

Example

```
>>> import Invasion_PGF as pgf
>>> def mu(x):
... return (1. + x + x**2 + x**3)/4
. . .
>>> pgf.R0(mu)
1,5000001241105565
>>> #probabilities of extinction up to generation 3
>>> pgf.extinction_prob(mu, 3, intermediate_values = True)
array([0., 0.25, 0.33203125, 0.36972018])
>>> #possible states in generation 3
>>> pgf.active_infections(mu, 3, 5)
array([0.36972018, 0.05259718, 0.07178445, 0.09609134, 0.07393309])
>>> pgf.completed_infections(mu, 3, 5)
array([ -2.04281037e-17, 2.5000000e-01, 6.25000000e-02,
       7.81250000e-02, 9.76562500e-02])
>>> pgf.active_and_completed(mu, 3, 5, 5)
array([[0., 0.25], 0.0625], 0.03125], 0.015625],
   [0.,0.,0.,0.,0.015625,0.015625],
     [0.,0.,0.,0.,0.015625,0.01953125],
     [0., 0., 0., 0., 0.015625, 0.0234375],
     [0., 0., 0., 0., 0.01171875]])
```

Summary

- PGFs allow us to magically calculate a lot of properties of small outbreaks.
- ▶ We've implemented many of the relevant functions in python.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Detailed tutorial (effectively a short textbook) available at https://arxiv.org/abs/1803.05136