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Context

Consider the spread of a disease starting from a single infected
individual in a large population:

» A new disease emerges from some animal reservoir.
» A disease is introduced from some other population.

Focus on early spread, before saturation effects matter.
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Outline

» Quick taste of PGF properties
» Overview of things we can calculate with PGFs (and inference
implications)

» A Python implementation
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Joel Miller @joel_c_miller - Mar 14 v
Everything you ever wanted to know about using
#ProbabilityGeneratingFunctions to study #InfectiousDisease :

arxiv.org/abs/1803.05136 (I am contemplating turning this into a textbook on
PGFs if | find interested collaborators who use PGFs in other biological systems)
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Replying to @joel_c_miller

Definitely happy to follow
#ProbabilityGeneratingFunctions ! They rock,
though I still haven’t quite got past the ‘this
is just weird magic’ stage
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C] T
Numberinfected | 1 | 2 | 3 | 4 | 5 | 6
» Then

ZP x+x +x3 4+ x* + x° + x%)

encodes the distribution of the infections caused.



PGF for multiple infectors

» Now consider two such individuals. The PGF of the combined
number of infections caused
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» The PGF of the number of infections caused by n individuals
is given by [u(x)]".
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» Starting with one infected individual, what do we expect after
2 generations of transmission?
» Assuming first person rolls a particular value, we write

[10x) = n(x),
x) = (eGP,

EHx) = [u()]°

» For the second generation of transmission we have each with
equal probability

1 1 1 1 ;
S0 + 100 + -+ B30 = Y g lu()
= ()

» The big takeaway is that composition of PGFs shows up
naturally in getting from one generation to the next.
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Other distributions

» Assume each individual causes a Poisson-distributed number
of infections with rate parameter Ry.

> . i > Roie_Ro i
u(x) = Z P(i)x' = Z — X
i=0 i=0 '
-R (Rox) —Ro ,Rox
0 Z i 0 ~Ro
i=0
Ro(x—1)

» Many commonly-used distributions have compact, closed-form
PGFs.
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Making predictions from the PGF

» The PGF of the number infected in generation g is .l8](x)
where the superscript denotes function composition

(- - - (x)))))-

» The extinction probability at generation g can be found by
setting x = 0.

pl€1(0) = P(0lg) + P(1/g)0 + P(2/g)0* + - - = P(0|g)

» For pu(x) = (x + - -+ x®)/6, this gives 0.

» But for the Poisson distribution we get something different. ..
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Black magic

Probability of 0 can be found by iterating from x =0

> If only there were an efficient way to calculate the coefficient
of arbitrary x' for plel(x). ..

» Given a PGF f(x), we can quickly
approximate the coefficient of x” "
in its Taylor Series by

27rlm/M -
o
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» This is really just a result from Complex Analysis about
calculating residues through contour integration.
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Going further

» We can also calculate the number of active and completed
infections at generation g.

» Let Mg(y,z) = pir(g)y'z" be the PGF for having i active
infections and r completed infections at generation g.

» Then Mg (y, z) satisfies

)y g=0
Noly,2) = {Zu(”gl(y,Z)) >0

» Similar contour integrations works.



Comparison with simulation (Poisson, third generation)
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Final sizes

It can be shown (the proof is beautiful) that P(Final size = j)
equals 1/j times the coefficient of x/~1 in [u(x)}.



Final sizes

It can be shown (the proof is beautiful) that P(Final size = j)

equals 1/j times the coefficient of x)~1 in [u(x)}.
Distribution PGF Probability of j infections
Poisson eRo(x—1) Me—jRo
J!
Uniform xRo 1 j=1, -RO =0
0 otherwise
i i 1(nj\n,j—1,nj—j+1
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Geometric p/(1—gx) j(J-J_l )p’q’
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Inference

» Given an assumed offspring distribution type (often Negative
Binomial), a prior on the parameters of the distribution, and
observed outbreak sizes:
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Inference

» Given an assumed offspring distribution type (often Negative
Binomial), a prior on the parameters of the distribution, and
observed outbreak sizes:

» Bayesian inference allows us to infer improved parameter
values.

> See:
» Downgrading disease transmission risk estimates using terminal
importations bioRxiv
> Inference of RO and Transmission Heterogeneity from the Size
Distribution of Stuttering Chains. PLoS One
» Characterizing the Transmission Potential of Zoonotic
Infections from Minor Outbreaks. PLoS Comp Bio
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Python Implementation

| have created a Python package that does most of this:
https://github.com/joelmiller/Invasion_PGF

(currently not compatible with python 2.x — just need to test and
push new version to github)


https://github.com/joelmiller/Invasion_PGF

Example

>>> import Invasion_PGF as pgf
>>> def mu(x):
return (1. + x + x**2 + x**3)/4

>>> pgf .RO(mu)

1.5000001241105565

>>> #probadbilities of extinction up to gemeration 3

>>> pgf.extinction_prob(mu, 3, intermediate_values = True)

array([ 0. , 0.25 , 0.33203125, 0.36972018])

>>> #possible states in generation 3

>>> pgf.active_infections(mu, 3, 5)

array([ 0.36972018, 0.05259718, 0.07178445, 0.09609134, 0.07393309])

>>> pgf.completed_infections(mu, 3, 5)

array([ -2.04281037e-17, 2.50000000e-01, 6.25000000e-02,
7.81250000e-02, 9.76562500e-02])

>>> pgf.active_and_completed(mu, 3, 5, 5)

array([[ 0. , 0.25 , 0.0625 , 0.03125 , 0.015625 1,
[o. , O. , O. , 0.015625 , 0.015625 1,
[ 0. , 0. , O. , 0.015625 , 0.01953125],
[ o. , O. , 0 , 0.015625 , 0.0234375 1,
[o. , 0 , O , O. , 0.01171875]1)

u]
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I
i
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Summary

» PGFs allow us to magically calculate a lot of properties of
small outbreaks.
» We've implemented many of the relevant functions in python.

» Detailed tutorial (effectively a short textbook) available at
https://arxiv.org/abs/1803.05136


https://arxiv.org/abs/1803.05136

