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Poisson-binomial state-space model

S→I→R stochastic compartment model

Focus on Susceptible (S) - Infectious (I) - Recovered (R) model with Poisson
transitions, i.e. −→

SI ∼ Po(λS→ISI/N)
−→
IR ∼ Po(λI→RI)

updating the states, i.e.

St+1 = St −
−→
SI , It+1 = It +

−→
SI −

−→
IR, Rt+1 = Rt +

−→
IR

and binomial obserations

YS→I ∼ Bin(
−→
SI , θS→I) YI→R ∼ Bin(

−→
IR, θI→R)

A more general stochastic dynamic modeling structure can be used to extended
to geographical regions, subpopulations, etc.

Jarad Niemi (ISU) Forecasting from low counts April 19, 2016 3 / 18



Poisson-binomial state-space model

S→I→R stochastic compartment model

Focus on Susceptible (S) - Infectious (I) - Recovered (R) model with Poisson
transitions, i.e. −→

SI ∼ Po(λS→ISI/N)
−→
IR ∼ Po(λI→RI)

updating the states, i.e.

St+1 = St −
−→
SI , It+1 = It +

−→
SI −

−→
IR, Rt+1 = Rt +

−→
IR

and binomial obserations

YS→I ∼ Bin(
−→
SI , θS→I) YI→R ∼ Bin(

−→
IR, θI→R)

A more general stochastic dynamic modeling structure can be used to extended
to geographical regions, subpopulations, etc.

Jarad Niemi (ISU) Forecasting from low counts April 19, 2016 3 / 18



Poisson-binomial state-space model

S→I→R stochastic compartment model

Focus on Susceptible (S) - Infectious (I) - Recovered (R) model with Poisson
transitions, i.e. −→

SI ∼ Po(λS→ISI/N)
−→
IR ∼ Po(λI→RI)

updating the states, i.e.

St+1 = St −
−→
SI , It+1 = It +

−→
SI −

−→
IR, Rt+1 = Rt +

−→
IR

and binomial obserations

YS→I ∼ Bin(
−→
SI , θS→I) YI→R ∼ Bin(

−→
IR, θI→R)

A more general stochastic dynamic modeling structure can be used to extended
to geographical regions, subpopulations, etc.

Jarad Niemi (ISU) Forecasting from low counts April 19, 2016 3 / 18



Poisson-binomial state-space model

S→I→R stochastic compartment model

Focus on Susceptible (S) - Infectious (I) - Recovered (R) model with Poisson
transitions, i.e. −→

SI ∼ Po(λS→ISI/N)
−→
IR ∼ Po(λI→RI)

updating the states, i.e.

St+1 = St −
−→
SI , It+1 = It +

−→
SI −

−→
IR, Rt+1 = Rt +

−→
IR

and binomial obserations

YS→I ∼ Bin(
−→
SI , θS→I) YI→R ∼ Bin(

−→
IR, θI→R)

A more general stochastic dynamic modeling structure can be used to extended
to geographical regions, subpopulations, etc.

Jarad Niemi (ISU) Forecasting from low counts April 19, 2016 3 / 18



Poisson-binomial state-space model

SIR modeling simulations
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Inference and forecasting

Forecasting with perfect information

Suppose you know transition rates λ, observation probabilities θ = 1, and
the states X0:t and your only goal is to forecast the future states Xt+1:T ,

i.e.

p(Xt+1:T |θ, λ,X0:t) = p(Xt+1:T |θ, λ,Xt)

this distribution is estimated via Monte Carlo simulation.
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Inference and forecasting
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Inference and forecasting

Delay in data analysis

Suppose you have a one or two week delay in collecting, processing, and
analyzing so that when trying to forecast future states you are using “old”
data,

i.e.

p(Xt+1:T |θ, λ,Xt−L)

where

L = 0 indicates up-to-date data

L = 1 indicates one-week old data

L = 2 indicates two-week old data
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Inference and forecasting
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Inference and forecasting
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Forecasting with noisy observations

Forecasting with noisy observations

Suppose, we know the transition rates (λ) and the observation probabilities
(θ), but we only observe a noisy version of the state transitions, i.e. .

YS→I ∼ Bin(
−→
SI , θS→I) YI→R ∼ Bin(

−→
IR, θI→R)

Now the forecast distribution we need is

p(Xt+1:T |λ, θ, y0:t) =
∫

p(Xt+1:T , λ, θ|Xt)p(Xt |λ, θ, y0:t)dXt .
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Forecasting with noisy observations
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Forecasting with noisy observations

Noisily observed state
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Forecasting with inference on parameters

Forecasting with inference on parameters

In reality, we don’t know the transition rates (λ) and the observation
probabilities (θ), and we only observe a noisy version of the state
transitions.

Now the forecast distribution we need is

p(Xt+1:T |y0:t) =
∫ ∫ ∫

p(Xt+1:T |λ, θ,Xt)p(Xt , λ, θ|y0:t)dλdθdXt .
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Forecasting with inference on parameters

Prior distributions

In order to calculate (or approximate) the integral∫ ∫ ∫
p(Xt+1:T , λ, θ|Xt)p(Xt , λ, θ|y0:t)dλdθdXt

we need to assign priors to λ, θ, and X0.

Suppose, we assume

θk
ind∼ Be(nθpk , nθ[1− pk ])

λk
ind∼ Ga(nλck , nλ)

X0 ∼ Mult(N; z1, . . . , zS)

We can control how informative the priors are with nθ and nλ.
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Forecasting with inference on parameters

Informative priors
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Forecasting with inference on parameters

Balance priors and data
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Forecasting with inference on parameters

We need information

Information can come from

Data

Priors

We can quantitatively assess the impact of better information, i.e.

increasing prior information, e.g. λ ∼ Ga(nλck , nλ) by increasing nλ,

increasing surveillance, e.g. Y ∼ Bin(S → I , θ) by increasing θ, and

increasing timeliness, e.g. p(Xt+1:T |y1:t−L) by decreasing L.

Then, we can discuss how to assign resources depending on the costs
associated with each impact above.
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