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Overview

@ Poisson-binomial state-space model
© Inference and forecasting
© Forecasting with noisy observations

@ Forecasting with inference on parameters
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Poisson-binomial state-space model

S—1—R stochastic compartment model

Focus on Susceptible (S) - Infectious (I) - Recovered (R) model with Poisson
transitions, i.e.
Sl ~ Po(Ag_,|SI/N) TR ~ Po(A_Rl)
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Poisson-binomial state-space model

S—1—R stochastic compartment model

Focus on Susceptible (S) - Infectious (I) - Recovered (R) model with Poisson
transitions, i.e.
Sl ~ Po(Ag_,|SI/N) TR ~ Po(A_Rl)

updating the states, i.e.

St+1:5t_§l>7 /t+1:It+§_ma Rt+1:Rt+m
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Poisson-binomial state-space model

S—1—R stochastic compartment model

Focus on Susceptible (S) - Infectious (I) - Recovered (R) model with Poisson
transitions, i.e.

Sl ~ Po(Ag_,|SI/N) TR ~ Po(A_Rl)
updating the states, i.e.
Sir1 :St_§1>7 lev1= /t+§/>—m, Riy1 = Rt"i'm

and binomial obserations

v .
Yo~ Bin(Sl,05_1)  Yi_g ~ Bin(IR.6_g)
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Poisson-binomial state-space model

S—1—R stochastic compartment model

Focus on Susceptible (S) - Infectious (I) - Recovered (R) model with Poisson

transitions, i.e.
Sl ~ Po(Ag_,|SI/N) TR ~ Po(A_Rl)

updating the states, i.e.
— —
See1=Si—SI, hur=l+SI—IR, Rey1=Ri+IR
and binomial obserations
_>

Yo~ Bin(Sl,05_1)  Yi_g ~ Bin(IR.6_g)

A more general stochastic dynamic modeling structure can be used to extended
to geographical regions, subpopulations, etc.
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Poisson-binomial state-space model

SIR modeling simulations
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Poisso space model

SIR modeling simulations
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Inference and forecasting

Forecasting with perfect information

Suppose you know transition rates A, observation probabilities § = 1, and
the states Xp.; and your only goal is to forecast the future states Xy 1.7,
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Inference and forecasting

Forecasting with perfect information

Suppose you know transition rates A, observation probabilities § = 1, and

the states Xp.; and your only goal is to forecast the future states Xy 1.7,
i.e.

p(Xt+1:T|07 )\7 XO:t') — p(Xt+12T|05 >\7 Xt)
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Inference and forecasting

Forecasting with perfect information

Suppose you know transition rates A, observation probabilities § = 1, and

the states Xp.; and your only goal is to forecast the future states Xy 1.7,
i.e.

p(Xt+1:T|07 )\7 XO:t') — p(Xt+12T|05 >\7 Xt)

this distribution is estimated via Monte Carlo simulation.
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Inference and forecast
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Inference and forecasting

Delay in data analysis

Suppose you have a one or two week delay in collecting, processing, and

analyzing so that when trying to forecast future states you are using “old”
data,
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Inference and forecasting

Delay in data analysis

Suppose you have a one or two week delay in collecting, processing, and

analyzing so that when trying to forecast future states you are using “old”
data, i.e.

P(Xt+1:T|97 )\7 Xt—L)
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Inference and forecasting

Delay in data analysis

Suppose you have a one or two week delay in collecting, processing, and

analyzing so that when trying to forecast future states you are using “old”
data, i.e.

P(Xey1:710, A, Xe— 1)
where
@ L =0 indicates up-to-date data
o L =1 indicates one-week old data

@ L = 2 indicates two-week old data
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Inference and forecasting
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Inference and forecast
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Forecasting with noisy observations

Forecasting with noisy observations

Suppose, we know the transition rates (A) and the observation probabilities
(0), but we only observe a noisy version of the state transitions, i.e. .

e .
Yo~ Bin(S1,05_1) ViR~ Bin(IR.6_g)
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Forecasting with noisy observations

Forecasting with noisy observations

Suppose, we know the transition rates (A) and the observation probabilities
(0), but we only observe a noisy version of the state transitions, i.e. .

e .
Yo~ Bin(S1,05_1) ViR~ Bin(IR.6_g)

Now the forecast distribution we need is

P(Xt+1:T‘)\797)’0:t) = /P(Xt+1:T7/\,9’Xt)P(Xt|/\797}/0:t)dXt~
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Forecasting with noisy observations
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Forecasting with noisy observations

Noisily observed state
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Forecasting with inference on parameters

Forecasting with inference on parameters

In reality, we don't know the transition rates (A) and the observation

probabilities (#), and we only observe a noisy version of the state
transitions.
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Forecasting with inference on parameters

Forecasting with inference on parameters

In reality, we don't know the transition rates (A) and the observation

probabilities (#), and we only observe a noisy version of the state
transitions.

Now the forecast distribution we need is

p(Xer1rlyo) = / / / P(Xer 171N 8, X )p(Xes N, Blyo.c) dAdOAXc.
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Forecasting with inference on parameters

Prior distributions

In order to calculate (or approximate) the integral

/ / / P(Xes 173\ 01X p(Xe, A, O]y0.0) IAOAX,

we need to assign priors to A, 0, and Xp.
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Forecasting with inference on parameters

Prior distributions

In order to calculate (or approximate) the integral

/ / / P(Xes 173\ 01X p(Xe, A, O]y0.0) IAOAX,

we need to assign priors to A, 8, and Xp. Suppose, we assume
ind
Ok ' Be(ngpx, no[l — pk])

M ™ Ga(nycr, ny)
Xo ~ Mult(N;z,...,zs)
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Prior distributions

In order to calculate (or approximate) the integral

[ ][ pOesr A 81X)p(X A Bl drdoax:
we need to assign priors to A, 8, and Xp. Suppose, we assume

ind
O "HN Be(ngpx, no[1 — pi])
)\k Ifn\(/l Ga(n,\ck,n,\)
Xo ~ Mult(N;z,...,zs)

We can control how informative the priors are with ng and n,.
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Informative priors
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Forecasting ference on parameters

Balance priors and data
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Forecasting with inference on parameters

We need information

Information can come from
@ Data

@ Priors
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Forecasting with inference on parameters

We need information

Information can come from
@ Data

@ Priors

We can quantitatively assess the impact of better information, i.e.

@ increasing prior information, e.g. A ~ Ga(nyck, ny) by increasing ny,
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Forecasting with inference on parameters

We need information

Information can come from
@ Data

@ Priors
We can quantitatively assess the impact of better information, i.e.

@ increasing prior information, e.g. A ~ Ga(nyck, ny) by increasing ny,

@ increasing surveillance, e.g. Y ~ Bin(S — 1,0) by increasing 6, and
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Forecasting with inference on parameters

We need information

Information can come from
@ Data

@ Priors

We can quantitatively assess the impact of better information, i.e.
@ increasing prior information, e.g. A ~ Ga(nyck, ny) by increasing ny,
@ increasing surveillance, e.g. Y ~ Bin(S — 1,0) by increasing 6, and

@ increasing timeliness, e.g. p(X¢+1.7|y1:t—1) by decreasing L.
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Forecasting with inference on parameters

We need information

Information can come from
@ Data

@ Priors

We can quantitatively assess the impact of better information, i.e.
@ increasing prior information, e.g. A ~ Ga(nyck, ny) by increasing ny,
@ increasing surveillance, e.g. Y ~ Bin(S — 1,0) by increasing 6, and
@ increasing timeliness, e.g. p(X¢+1.7|y1:t—1) by decreasing L.

Then, we can discuss how to assign resources depending on the costs
associated with each impact above.
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