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Introduction

« Phylodynamics: the study of how ecological and
evolutionary processes act or interact to shape
the phylogenetic history of pathogens (Grenfell
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Introduction

Phylodynamics: the study of how ecological and
evolutionary processes act or interact to shape
the phylogenetic history of pathogens (Grenfell
et al., 2004; Volz et al., 2014)

Phylodynamic inference: the statistical practice
of inferring ecological/evolutionary dynamics
from phylogenetic trees.



HIV 1in rural KwaZulu-Natal
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HIV 1in rural KwaZulu-Natal
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Phylodynamic model for HIV in KZN
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Phylodynamic estimates for HIV in KZN
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Phylodynamic estimates for HIV in KZN
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What current phylodynamic methods do well:

« Accurately reconstruct historical and recent
epidemic dynamics

« Accommodate geographic and other forms of host
population structure - allowing us to infer
sources of transmission

« Account for incomplete or biased sampling of
sequence data



What current methods do not do well:

« Consider in
and therefore differences 1in
the epidemic potential of pathogen lineages.



The big assumption of phylogenetic models

Replication process Tree Mutation process Sequences
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The big assumption of phylogenetic models

Replication process Tree Mutation process Sequences




The 1ndependence assumption

« This independence assumption allows us to factor
the joint likelihood of a tree 7 and sequence
data S into terms we can easily compute:

L(S,T|w,0) = L(S|T, n)p(T10).



Example: deleterious mutation load
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The multi-type birth-death model

« Allows us to compute the joint likelihood that a
tree and genotype data at a single loci evolved

under a non-neutral model (Stadler & Bonhoeffer,
2013).

Tanja Stadler




The multi-type birth-death model
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The multi-type birth-death model
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The multi-type birth-death model
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The multi-type birth-death model

Mutation event

— T




The multi-type birth-death model
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The multi-type birth-death model

« At a single evolving site, we can compute the
joint likelihood of a tree and the ‘sequence’ at

each tip using a multi-type birth-death model
(Stadler & Bonhoeffer, 2013).
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The inevitable problem..

« We need to track all possible genotypes in the
state space of the model, which increases
exponentially with the number of sites L (e.g. 4
for a nucleotide model)

« MTBD becomes prohibitively computationally
expensive for anything more than just a few
evolving sites.



The marginal fitness birth-death model

« We track molecular evolution at each site,
computing the marginal site probability w that a
site 1s in particular state.



The marginal fitness birth-death model

« We track molecular evolution at each site,
computing the marginal site probability w that a
site 1s in particular state.

« We approximate the probability of a lineage

being 1n any genotype based on the marginal site
probabilities; e.g.:

Wn, ACT = Wn,1,A X Wp 2.C X Wnp 3T



The marginal fitness birth-death model

« We track molecular evolution at each site,
computing the marginal site probability w that a
site 1s in particular state.

« We approximate the probability of a lineage
being 1n any genotype based on the marginal site
probabilities; e.g.:

Wn, ACT = Wn,1,A X Wp 2.C X Wnp 3T

« We then sum, or marginalize, over the fitness of
each genotype weighted by 1ts approximate
genotype probability to compute the expected
fitness of a lineage:

Fn Y folong

geg



The marginal fitness birth-death model

« We now have a new system of ODEs for tracking
the probability 0, , ; that a lineage evolved
exactly as observed at each site «k:

M
d A
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The marginal fitness birth-death model

« We now have a new system of ODEs for tracking the
probability that a lineage evolved exactly as
observed at each site k:

M
d )

—Dpki(t) =— | foriA ii T+ d]| Dygi(t
dt k,i(t) (f,k:, 0+JZ;’Y,J+) Ji(T)
+ 20 kiMoo B (£) D g i (1)

M
+ Z Yi,j Dk, (t)
=1

This allows us to consider how
selection shapes sequence evolution at multiple
sites while considering how mutations act together
to shape the fitness of a lineage.



Posterior median

Results: quantifying site-specific effects
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Adaptation of Ebola virus to humans
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Adaptation of Ebola virus to humans
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Current and ongoing work

Marginal Fitness Birth Death model 1is
implemented in LUMIERE, a package for BEASTZ.

High performance phylodynamic inference using
Generalized Birth-Death Models



Generalized Birth-Death Models

« We would 1ike to be able to learn how pathogen
traits map to birth-death fitness parameters:
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Can we have the best of both worlds?

« Can we perform likelihood-based phylodynamic
inference under birth-death models

« While using the tools of machine learning to
learn how pathogen features (e.g. genotypes) map
to population-level parameters?



Phylodynamics 1n TensorFlow 1F

Trees can be represented as computational graphs
in TensorFlow with data arrays (1i.e. tensors)
flowing between nodes
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Phylodynamics 1n TensorFlow

tensorflow tf
FitModel FitModel
TimeVaryingBirthDeathModel TimeVaryingBirthDeathModel

def train_model(tree, fasta_file, model, params) :

"Convert tree to TensorTree object"
tt = TensorTree(tree,seq_dic,++params) ___}— Convert tree to tensor-like object

"Build birth-death model"

bdm = TimeVaryingBirthDeathModel() Specifyvy birth-death model
bdm.build(tt,++params) } P Y

"Build genotype to fitness model"
fm = RandomEffectsFitModel()

fm.build(tt,sites) } Specify fitness model
line_fit_vals, birth_fit_vals fm.update(tt)

"Compute likelihood of tree under fitness model"

tree_log_like = bdm.likelihood(line_fit_vals,birth_fit_vals,tt) . .
penalty_log_like = fm.penalty(tt) :}' Specucy loss function
tree_loss (tree_log_like + penalty_log_like)

"Set up optimizer"
learning_rate 0.01;

n_epochs 1000 Set up
optimizer = tf.train.AdamOptimizer(learning_rate learning_rate)

training_op = optimizer.minimize(tree_loss, var_list fm.get_variables()) Optimizer‘
tf.Session() sess:

sess.run(tf.global_variables_initializer())

epoch range(n_epochs):
sess.run(training_op)

bdm, fm
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Fitness model for H3NZ2 influenza
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Phylodynamics vs. Deep Mutational Scanning

« Very small fitness effects once we account for
seasonal fluctuations in flu transmission
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The marginal fitness birth-death model

« We now have a new system of ODEs for tracking
the probability that a 1lineage evolved exactly
as observed at each site «:

M
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j=1

We can track evolution at each site
individually without tracking all genotypes.



The marginal fitness birth-death model

« We now have a new system of ODEs for tracking
the probability that a 1lineage evolved exactly
as observed at each site «:

M
d A
%Dn,k,i(t) = — (fn,k:,i)\o + Z%’,j + d) Dy, 1.i(t)

J=1

+ 2 i Mo B () D g i(2)
M
+ Z%’,an,/c,j ()
j=1
We can simultaneously take into account

the coupled fitness effects of mutations at all
other sites.



The marginal fitness birth-death model

« We now have a new system of ODEs for tracking
the probability that a 1lineage evolved exactly
as observed at each site «:

M
d )
%Dn k z( ) — (fn,k:,i)\O + Z%,j + d) Dn,k,z(t)

J=1

+ 2 kiAo Eu (£) Dy i (1)

M
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j=1

Tracking 0, . ; all the way back to the
root allows us to compute the joint likelihood
of the tree and the sequence data at site k.

L(S, T0) = ZDM (troot)



Adaptation of Ebola virus to humans
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