

Phylodynamics in a world of rapidly adapting pathogens

David Rasmussen Dept. of Entomology and Plant Pathology Bioinformatics Research Center NC State University

7th Annual Disease Modeling Symposium Bellevue, WA April 15th, 2019

Introduction

• **Phylodynamics:** the study of how ecological and evolutionary processes act or interact to shape the phylogenetic history of pathogens (Grenfell *et al.*, 2004; Volz *et al.*, 2014)

Introduction

• **Phylodynamics:** the study of how ecological and evolutionary processes act or interact to shape the phylogenetic history of pathogens (Grenfell *et al.*, 2004; Volz *et al.*, 2014)

 Phylodynamic inference: the statistical practice of inferring ecological/evolutionary dynamics from phylogenetic trees.

HIV in rural KwaZulu-Natal

HIV in rural KwaZulu-Natal

Phylodynamic model for HIV in KZN

Rasmussen et al., Virus Evolution (2018)

Phylodynamic estimates for HIV in KZN

Rasmussen et al., Virus Evolution (2018)

Phylodynamic estimates for HIV in KZN

Rasmussen et al., Virus Evolution (2018)

What current phylodynamic methods do well:

 Accurately reconstruct historical and recent epidemic dynamics

 Accommodate geographic and other forms of host population structure – allowing us to infer sources of transmission

 Account for incomplete or biased sampling of sequence data

What current methods do not do well:

 Consider non-neutral genetic variation in pathogen fitness and therefore differences in the epidemic potential of pathogen lineages.

The big assumption of phylogenetic models

The big assumption of phylogenetic models

The independence assumption

 This independence assumption allows us to factor the joint likelihood of a tree T and sequence data S into terms we can easily compute:

 $L(\mathcal{S}, \mathcal{T} | \mu, \theta) = L(\mathcal{S} | \mathcal{T}, \mu) p(\mathcal{T} | \theta).$

Example: deleterious mutation load

• Allows us to compute the joint likelihood that a tree and genotype data at a single loci evolved under a non-neutral model (Stadler & Bonhoeffer, 2013).

Tanja Stadler

 At a single evolving site, we can compute the joint likelihood of a tree and the 'sequence' at each tip using a multi-type birth-death model (Stadler & Bonhoeffer, 2013).

 At a single evolving site, we can compute the joint likelihood of a tree and the 'sequence' at each tip using a multi-type birth-death model (Stadler & Bonhoeffer, 2013).

The inevitable problem...

• We need to track all possible genotypes in the state space of the model, which increases exponentially with the number of sites L (e.g. 4^{L} for a nucleotide model)

 MTBD becomes prohibitively computationally expensive for anything more than just a few evolving sites.

• We track molecular evolution at each site, computing the marginal site probability ω that a site is in particular state.

- We track molecular evolution at each site, computing the marginal site probability ω that a site is in particular state.
- We approximate the probability of a lineage being in any genotype based on the marginal site probabilities; e.g.:

$$\hat{\omega}_{n,\text{ACT}} = \omega_{n,1,\text{A}} \times \omega_{n,2,\text{C}} \times \omega_{n,3,\text{T}}$$

- We track molecular evolution at each site, computing the marginal site probability ω that a site is in particular state.
- We approximate the probability of a lineage being in any genotype based on the marginal site probabilities; e.g.:

$$\hat{\omega}_{n,\text{ACT}} = \omega_{n,1,\text{A}} \times \omega_{n,2,\text{C}} \times \omega_{n,3,\text{T}}$$

 We then sum, or marginalize, over the fitness of each genotype weighted by its approximate genotype probability to compute the expected fitness of a lineage:

$$f_n \approx \sum_{g \in \mathcal{G}} f_g \hat{\omega}_{n,g}$$

• We now have a new system of ODEs for tracking the probability $D_{n,k,i}$ that a lineage evolved exactly as observed at each site k:

$$\frac{d}{dt}D_{n,k,i}(t) = -\left(\hat{f}_{n,k,i}\lambda_0 + \sum_{j=1}^M \gamma_{i,j} + d\right)D_{n,k,i}(t)$$
$$+ 2\hat{f}_{n,k,i}\lambda_0E_u(t)D_{n,k,i}(t)$$
$$+ \sum_{j=1}^M \gamma_{i,j}D_{n,k,j}(t).$$

 We now have a new system of ODEs for tracking the probability that a lineage evolved exactly as observed at each site k:

$$\frac{d}{dt}D_{n,k,i}(t) = -\left(\hat{f}_{n,k,i}\lambda_0 + \sum_{j=1}^M \gamma_{i,j} + d\right)D_{n,k,i}(t)$$
$$+ 2\hat{f}_{n,k,i}\lambda_0E_u(t)D_{n,k,i}(t)$$
$$+ \sum_{j=1}^M \gamma_{i,j}D_{n,k,j}(t).$$

 The important part: This allows us to consider how selection shapes sequence evolution at multiple sites while considering how mutations act together to shape the fitness of a lineage.

Results: quantifying site-specific effects

		GP1																	GP2			
_	_	۲ľ	_	ş -ş ş				Y WWY,														
S	SP			RBD				Glycan Cap				MLD							HR1 HR2 TM			
GF varian	, t 2	29	82	107	202	206	230	239	291	330	371	375	407	410	439	480	485	637		Infection Normalized to	vity Makona (%)	
C1	5 F	R	Α	Ν	Ρ	т	т	L	w	Ρ	Т	Ρ	н	R	κ	G	т	D		0 100 200	300 400	
A									R										W291R	Ma C15		7
A'2	2									S									P330S	A1	*	*
A'3	3									S						D			P330S, G480D	A'2		
A'4	1 I			D						S									N107D, P330S	A'3		
A	5			D						S						D			N107D, P330S, G480D			
A	5									S			Y			G			P330S, H407Y, D480G	A6		*
B			v																A82V	B1	*:	*
B	2		v								v								A82V. 1371V	B2	- *:	* **
AB'	3		Ā								v								1371V	AB'3		
B4	1		۷		L														A82V, P202L	B4	n.:	S *
B'5	5		v					s											A82V, L239S	BS	- *:	* **
B	6		V		L			S											A82V, P202L, L239S		-	
B	7 1	к	v																R29K, A82V	В7	→ **;	* **
B	3		v											s					A82V, R410S			* **
B			۷											s	Е				A82V, R410S, K439E	Ba	- *	* **
B1(v									s							482V P375S	B10		* **
AB'1'			Δ									s							P375S	AB'11		
			<u> </u>									Ū								D42		
B12	2		V			М													A82V, T206M	B12	⊣ **:	* **
B13	3		v				Α												A82V, T230A	B13	- *:	* **
B14	1		v				Α										Α		A82V, T230A, T485A	B14	*	* **
B'1	5		v				Т										Α		A82V. T485A	B'15		
B16	6		v				Α										Т	G	A82V, T230A, D637G	B16	- *	* *
			-															-				

Urbanowicz et al. (Cell, 2016)

Current and ongoing work

• Marginal Fitness Birth Death model is implemented in *LUMIERE*, a package for BEAST2.

 High performance phylodynamic inference using Generalized Birth-Death Models

Generalized Birth-Death Models

• We would like to be able to learn how pathogen traits map to birth-death fitness parameters:

Can we have the best of both worlds?

 Can we perform likelihood-based phylodynamic inference under birth-death models

 While using the tools of machine learning to learn how pathogen features (e.g. genotypes) map to population-level parameters?

 Trees can be represented as computational graphs in TensorFlow with data arrays (i.e. *tensors*) flowing between nodes

Phylodynamics in TensorFlow

Deep mutational scanning of hemagglutinin helps predict evolutionary fates of human H3N2 influenza variants

 $\label{eq:Leebard} \begin{array}{l} \text{Juhye M. Lee}^{\mathrm{a,d,e,1}}, \text{John Huddleston}^{\mathrm{b,f,1}}, \text{Michael B. Doud}^{\mathrm{a,d,e}}, \text{Kathryn A. Hooper}^{\mathrm{a,f}}, \text{Nicholas C. Wu}^{\mathrm{g}}, \text{Trevor Bedford}^{\mathrm{b,c,1}}, \\ \text{and Jesse D. Bloom}^{\mathrm{a,c,d,1}} \end{array}$

^a Basic Sciences Division; ^b Vaccine and Infectious Disease Division; ^c and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; ^d Department of Genome Sciences; ^eMedical Scientist Training Program; ^r and Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA; ^g Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037

Fitness model for H3N2 influenza

Phylodynamics vs. Deep Mutational Scanning

• Very small fitness effects once we account for seasonal fluctuations in flu transmission

A big thank you to:

Prof. Tanja Stadler

For the South African HIV project:

Tulio de Oliviera Eduan Wilkinson Africa Health Research Institute

The Phylodynamics Research Group at NC State

phylodynamics.wordpress.ncsu.edu

For funding:

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

European Research Council

 We now have a new system of ODEs for tracking the probability that a lineage evolved exactly as observed at each site k:

$$\frac{d}{dt}D_{n,k,i}(t) = -\left(\hat{f}_{n,k,i}\lambda_0 + \sum_{j=1}^M \gamma_{i,j} + d\right)D_{n,k,i}(t)$$
$$+ 2\hat{f}_{n,k,i}\lambda_0E_u(t)D_{n,k,i}(t)$$
$$+ \sum_{j=1}^M \gamma_{i,j}D_{n,k,j}(t).$$

 Note 1: We can track evolution at each site individually without tracking all genotypes.

 We now have a new system of ODEs for tracking the probability that a lineage evolved exactly as observed at each site k:

$$\frac{d}{dt}D_{n,k,i}(t) = -\left(\hat{f}_{n,k,i}\lambda_0 + \sum_{j=1}^M \gamma_{i,j} + d\right)D_{n,k,i}(t)$$
$$+ 2\hat{f}_{n,k,i}\lambda_0E_u(t)D_{n,k,i}(t)$$
$$+ \sum_{j=1}^M \gamma_{i,j}D_{n,k,j}(t).$$

 Note 2: We can simultaneously take into account the coupled fitness effects of mutations at all other sites.

 We now have a new system of ODEs for tracking the probability that a lineage evolved exactly as observed at each site k:

$$\frac{d}{dt}D_{n,k,i}(t) = -\left(\hat{f}_{n,k,i}\lambda_0 + \sum_{j=1}^M \gamma_{i,j} + d\right)D_{n,k,i}(t)$$
$$+ 2\hat{f}_{n,k,i}\lambda_0E_u(t)D_{n,k,i}(t)$$
$$+ \sum_{j=1}^M \gamma_{i,j}D_{n,k,j}(t).$$

• Note 3: Tracking $D_{n,k,i}$ all the way back to the root allows us to compute the joint likelihood of the tree and the sequence data at site k.

$$L(\mathcal{S}_k, \mathcal{T}|\theta) = \sum_{i=1}^M D_{n,k,i}(t_{root})$$

