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HIV in rural KwaZulu-Natal 

the genotyping process is described by Manasa et al. (2016). In
total, 1,068 sequence samples from the DSA were included in
our analysis. In addition to these samples, we used a large data-
set containing 11,289 unique subtype C pol sequences described
previously by Wilkinson et al. (2016) as a regional background
dataset to help identify external introductions. This dataset
contained other sequences from South Africa (n = 7,739) as well
as sequences sampled between 1989 and 2014 from Angola
(n = 9), Botswana (n = 863), the DRC (n = 25), Malawi (n = 352),
Mozambique (n = 342), Swaziland (n = 47), Tanzania (n = 168),
Zambia (n = 1,476), and Zimbabwe (n = 268).

Maximum likelihood (ML) phylogenetic trees were recon-
structed using FastTree2 (Price et al., 2010). The ML trees were
then dated using Least Squares Dating (To et al. 2015), so that
branch lengths were given in units of real calendar time. For
dating, we assumed a molecular clock rate of 2.0 ! 10"3, which
falls in the center of previously estimated clock rates for sub-
type C (Wilkinson et al. 2016).

In a preliminary analysis, ML trees were reconstructed from
an alignment containing all sequences in the background data-
set together with all samples from the AHRI. To identify poten-
tial external introductions into the local population, we
reconstructed the ancestral location of each internal node in

the ML trees using the Fitch parsimony algorithm (Sankoff
1975). External introductions were assumed to occur whenever
a child node reconstructed to be in the local population had a
parent node reconstructed to be in the external population. The
midpoint time between the parent and child node was then
used as a proxy for the probable time of introduction.

For the phylodynamic analysis, phylogenetic trees were
reconstructed from all AHRI sequences and an equal number of
sequences randomly sampled from the background dataset.
This was done to reduce the computational cost of fitting the
phylodynamic model. To take into account phylogenetic uncer-
tainty and variability across sub-sampled datasets, the phylody-
namic analysis was replicated on ten phylogenies each
reconstructed from a different set of sequences sub-sampled
from the full regional background dataset. Estimates provided
in the Results represent an average over these ten phylogenies
and sampling replicates (see MCMC details below).

2.4 Ethics statement

Ethics permission for the population-based HIV surveillance at
the Africa Health Research Institute was obtained from the
Biomedical Research Ethics Committee of the College of Health

Figure 1. Location of the AHRI study population and prevalence within the area. (A and B) The location of KwaZulu-Natal province and the study area within the prov-
ince. (C) The spatial variability of HIV prevalence within the study area based on population-based surveillance.
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The ancestral location of each lineage in the ML tree was
then reconstructed using maximum parsimony to reveal how
viral lineages have moved over time (Fig. 2A). This allowed us to
identify potential external introductions at branches in the phy-
logeny where the most parsimonious ancestral location transi-
tioned from the external to the local population. Note that we
define an external introduction as transmission from an indi-
vidual in the external population to an individual living in the
local population independently of whether the transmission
event occurred inside or outside the local population because
the phylogeny contains no information about the exact location
of transmission. In total, 248 external introductions were identi-
fied into the local population. When transitions in ancestral lo-
cation occurred between parent and child nodes, we used the
midpoint between the parent and child node as a proxy for the
timing of external introductions. Most of these presumed intro-
duction events occurred between 1990 and 2000 during the pe-
riod of rapid epidemic growth in South Africa, with relatively

fewer introductions after 2000 once the epidemic stabilized
(Fig. 2B). Most introductions occurred from elsewhere in South
Africa, although a few potential introductions occurred from
Botswana, Malawi, Mozambique, Zambia, and Zimbabwe.

Because phylogenies only contain lineages ancestral to sam-
pled viruses, the number of external introductions identified in
the foregoing analysis likely represents only a small fraction of
the total number. Moreover, due to the large size of the epi-
demic relative to the number of infected individuals sampled
(!8%), it is extremely unlikely that we would have sampled
both descendants of any recent transmission event between an
external donor and a local recipient. In fact, the most recent
common ancestor of most pairs of sampled viruses predates the
early stages of the South African epidemic (Fig. 2A). The timing
of reconstructed state changes may therefore not be a reliable
proxy for the timing of introduction events since introductions
may have occurred more recently (see Fig. 3C). It is highly likely
then that our preliminary analysis based on parsimony both
underestimates the true number of external introductions and
skews their temporal distribution towards the more distance
past.

4.1 Phylodynamic analysis

We therefore developed a phylodynamic model based on a sim-
ple but still realistic epidemiological model using a previously
described structured coalescent framework (Volz 2012; Müller
et al. 2017) in order to quantify the contribution of external intro-
ductions versus local transmission. The model tracks the num-
ber of infected individuals in the external population along with
local epidemic dynamics (Fig. 3A and B). The model also proba-
bilistically tracks how lineages in the tree move between popula-
tions based on their sampling location and the estimated
transmission rates between populations (Fig. 3C). Tracking the
movement of lineages in this way allows us to estimate whether
new infections were derived from a local or external source. We
validated our model using phylogenies simulated to reflect dif-
ferent epidemic scenarios. In the first scenario, external intro-
ductions play a large role in driving and sustaining the local
epidemic (positive control). In the second scenario, external
introductions only play a minor role in seeding the epidemic
(negative control). In both scenarios, we were able to accurately
estimate both the overall epidemic dynamics and the incidence
attributable to internal and external transmission (Fig. 3D and E).

Using the phylodynamic model, we reconstructed epidemic
dynamics in the local population from phylogenies recon-
structed from the viral samples. As expected, both prevalence
and incidence rapidly grew during the 1990s in the local popula-
tion, and then grew more slowly after 2004 (Fig. 4A and B).
Posterior estimates of the external infected population size
through time and all inferred parameters are shown in
Supplementary Figs. S1–S4. After 2004, independent estimates
of prevalence and incidence based on population surveillance
data are available from the AHRI. Prevalence estimates based
on surveillance data were about 10 per cent higher than our
phylodynamic estimates, although both methods estimate a

Figure 2. The local HIV epidemic in the AHRI study population within the larger
phylogenetic context of the southern African subtype C epidemic. (A) ML phylo-
genetic tree reconstructed from HIV pol sequences from the AHRI (local) along
with the regional background dataset. Tips are colored by sampling location, in-
ternal branches are colored according to their ancestral location reconstructed
via maximum parsimony. (B) Time series showing the temporal distribution of
external introductions from each country into the local population, as identified
by maximum parsimony. The black line gives the total number of introductions
summed over all countries.

Table 6. Parameters and prior distributions for model with AIDS-related deaths.

Parameter Name Prior distribution Prior values

Kt ART transmission scalar Beta a ¼ 1.0; b ¼ 1.0
ct ART initiation rate Log-normal l ¼ #1.0996; r ¼ 0.5
!t ART removal rate Log-normal l ¼ #2.2769; r ¼ 0.5
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Phylodynamic model for HIV in KZN 

similar growth in prevalence since 2004 when widespread ac-
cess to ART began (Fig. 4A), consistent with earlier reports by
(Zaidi et al. 2013). Estimates of incidence since 2004 are in closer
agreement, with both methods returning a median estimate of
yearly incidence between 3 and 4 per cent with no detectable
decline since ART coverage began increasing in 2004 (Fig. 4B).

Given that we could reliably reconstruct overall epidemic dy-
namics from simulated and empirical viral phylogenies, we
used the phylodynamic model to quantify the relative contribu-
tion of external introductions versus local transmission to over-
all incidence. During the earliest stages of the local epidemic,
the incidence attributable to external introductions was very
high (Fig. 4B, red). While after 2004 the fraction attributable to
external introductions declined, as of 2014 an estimated 35 per
cent [95% confidence interval (CI): 20–60%] of all present day
infections were due to external introductions (Fig. 4C).

4.2 Model testing and robustness

While our phylodynamic reconstruction of epidemic dynamics
appears consistent with population-based surveillance, our

model makes several simplifying assumptions about HIV’s
transmission dynamics and demography in the AHRI popula-
tion. We therefore formulated four different variants of the base
model used above to relax what we view as the most question-
able of these assumptions. We then fit each variant to a single
ML phylogeny to gauge how robust our phylodynamic estimates
were to relaxing these assumptions. Informal comparisons of
the marginal likelihood of the phylogeny under each model
showed that all but one variant fit the phylogeny better than
the base model (Table 7). There were also interesting differences
in the epidemic dynamics reconstructed under each model as
we discuss below.

The first model variant included geographic hot and cold
spots of prevalence, relaxing the assumption in the base model
of no population substructure within the AHRI population.
Considering this form of subpopulation structure is a natural
choice because the AHRI population is clustered into areas of
high prevalence (>25%) along major roads and areas of low
prevalence (<10%) in more inaccessible rural areas (Tanser et al.
2009) (Fig. 1C). While adding subpopulation structure substan-
tially increased the marginal likelihood relative to the base

Figure 3. Schematic of the phylodynamic model and its validation on simulated data. Epidemic dynamics simulated under the model showing the number of infected
individuals in the external population Ie (A) and the local population (B). Transmission events from the external to the local population occur at rate aðtÞ and within the
local population at a rate proportional to bðtÞ. Both of these rates are time dependent and vary in a piecewise constant manner to accommodate changes in behavior,
treatment or other interventions. Although not shown here, viral lineages can also be exported from the local population through transmission to the external popula-
tion. (C) A simulated phylogeny generated under the same phylodynamic model. Each lineage is colored according to its probability of being in the local population
(blue). These probabilities were computed under the model based on each lineage’s sampling location and the estimated transmission rates between populations. (D
and E) Total incidence (gray) and incidence attributable to external introductions (red) inferred from simulated phylogenies. Solid lines represent the posterior median
estimate, shaded regions mark the 95 per cent credible intervals and open circles mark the true yearly incidence known from the simulations. In the positive control
(D), we correctly infer that external introductions played a large role in driving and sustaining the local epidemic; whereas in the negative control (E), we correctly infer
that external introductions only played a minor role in seeding the epidemic.
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Phylodynamic estimates for HIV in KZN 

model (Table 7), prevalence is still underestimated relative to
population-based surveillance and incidence is also estimated
to be slightly lower (Fig. 5D and E). Nevertheless, our estimates
of the fraction of incidence attributable to external introduc-
tions are very similar to those estimated under the base model
(Fig. 5F).

Because prevalence was underestimated in the base and hot
spot model, we considered a second model where individuals
could remain in the infected class longer due to removal rates
decreasing over time. Adding time-varying removal rates to the

base model did result in a more realistic increase in prevalence
towards present, but total prevalence was still underestimated
relative to population-based surveillance (Fig. 5G). Adding time-
varying removal rates did not increase the marginal likelihood
relative to the base model, but unlike the other model variants
this model did not add an additional population state to the
phylodynamic model.

Because allowing for a longer duration of infection appeared
to improve our estimates of prevalence, we considered a third
model where infected individuals could initiate ART after 2004.

Figure 4. Epidemic dynamics reconstructed from viral phylogenies using the phylodynamic model. (A) Prevalence estimates from the phylogeny (gray) and indepen-
dent surveillance data (blue). (B) Total incidence estimated from the phylogeny (gray) and surveillance data (blue). Incidence attributable to external introductions esti-
mated from the phylogeny is shown in red. (C) The fraction of incidence attributable to external introductions over time. All solid lines represent the posterior median
estimates while shaded regions mark the 95 per cent credible intervals. All estimates represent a posterior average over a set of phylogenies reconstructed from differ-
ent sub-sampled datasets and thus take into account both phylogenetic uncertainty and sampling variance.

Table 7. Comparison of phylodynamic model fit and epidemiological estimates as of 2014.

Model Marginal log likelihood Prevalence (%) Incidence (%) Fraction external

Base !18,278 21 2.37 0.35
Hot spots !18,229 21.3 2.6 0.31
txRemoval !18,282 27.6 3.61 0.21
ART !18,255 35.1 4.82 0.2
AIDS !18,239 47 5.1 0.05 (þ0.31 migrants)

Values reported are median posterior estimates.
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What current phylodynamic methods do well: 

• Accurately reconstruct historical and recent 
epidemic dynamics

• Accommodate geographic and other forms of host 
population structure – allowing us to infer 
sources of transmission

• Account for incomplete or biased sampling of 
sequence data



What current methods do not do well: 

• Consider non-neutral genetic variation in 
pathogen fitness and therefore differences in 
the epidemic potential of pathogen lineages.
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The independence assumption 

• This independence assumption allows us to factor 
the joint likelihood of a tree T and sequence 
data S into terms we can easily compute: 

1

Recoupling adaptive molecular evolution to phylogenetics

David A. Rasmussen1,2*, Tanja Stadler1,2

1 Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
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Abstract

To do...

Introduction

Many assumptions are made in modern phylogenetics to model molecular sequence evolution in a mathe-
matically tractable way. Perhaps the most biologically unjustified of these assumptions is that mutations
do not feedback and e↵ect the fitness of lineages bearing them. Most models therefore do not take into
account that lineages bearing highly beneficial or deleterious mutations would be more or less likely to
leave behind other sampled descendants.

Given the phylogenetic tree T , the likelihood of the sequence data is conditionally independent of the
eco-evolutionary processes that generated the tree. This independence assumption allows us to factor the
joint likelihood of the T and the sequence data S as follows:

L(S, T |µ, ✓) = L(S|T , µ)p(T |✓). (1)

In Bayesian phylogenetics, p(T |✓) is normally used a a prior distribution on trees.

Methods

The MTBD at a single evolving site

Here L(S, T |µ, ✓) can be computed exactly in a way that integrates over the genotypes of lineages.
This approach ultimately has limited utility for modeling evolution at multiple sites because the

number of possible unique sequences (or genotypes) scales with number of sites L as 4L for nucleotide
and 20L for amino acid sequences. The computational complexity of computing the likelihood of a tree
under the MTBD model in turn scales quadratically with the number of possible genotypes, rendering
the MTBD model all but useless for modeling evolution at more than a few sites.

The local decoupling assumption

To circumvent this problem, rather than tracking the state-space of all possible genotypes, we track the
state of each lineage in terms of a lower-dimensional discretized fitness space. Specifically, we assume
that each sequence (i.e. genotype) s can be mapped to a corresponding fitness value deterministically:
�(s) = !s.

Example: Consider a binary sequence of length L where all mutations are deleterious.
If we knew the ancestral sequence of each lineage over the entire tree and its corresponding fitness

values given by �(S), we can compute the likelihood L(T , Stips|�(Sanc), µ, ✓) of the tree and observed
sequences at the tips using a conditional form of the MTBD likelihood.
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The multi-type birth-death model 

• Allows us to compute the joint likelihood that a 
tree and genotype data at a single loci evolved 
under a non-neutral model (Stadler & Bonhoeffer, 
2013).
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The multi-type birth-death model 

• At a single evolving site, we can compute the 
joint likelihood of a tree and the ‘sequence’ at 
each tip using a multi-type birth-death model 
(Stadler & Bonhoeffer, 2013).

A A

A

T

C

2

[Stadler and Bonhoe↵er, 2013]. Let Dn(t) represent the probability density that the subtree descending
from lineage n evolved between time t and the present exactly as observed. Further, let Dn,i(t) represent
this same probability density but conditional on lineage n being in state i out of M possible states. Here
the state of a lineage refers to a specific nucleotide or amino acid at a particular site. We reserve the
term genotype to refer a certain configuration of states across multiple sites. The density Dn,i(t) can be
computed by solving a system of ODEs backwards in time from the present (t = 0) to time t:

d

dt
Dn,i(t) =� (�i +

MX

j=1

�i,j + di)Dn,i(t)

+ 2�iEi(t)Dn,i(t)

+
MX

j=1

�i,jDn,j(t).

(2)

Here, �i is the rate at which lineages in state i give birth to new lineages. Mutations occur independently
of birth events at rate �i,j between states i and j. Note that either the birth rate �i or the death rate di
can be state-specific and reflect the fitness of a lineage.

The Ei(t) term in (2) represents the probability that a lineage in state i is not sampled and has no
sampled descendants. This probability can be computed at any time t using a second set of ODEs:

d

dt
Ei(t) = (1� si)di � (�i +

MX

j=1

�i,j + di)Ei(t) + �iEi(t)
2 +

MX

j=1

�i,jEj(t). (3)

The parameter si is the probability that an individual lineage in state i is sampled upon death/removal.
At a branching event, the probability density Da,i of the parent lineage a in state i giving rise to two

descendent lineages n and m is updated as:

Da,i = 2�iDm,i(t)Dn,i(t). (4)

At the root, we can compute the probability density of the entire tree at time troot by summing over
all possible states of the root

Dn =
MX

i=1

gi
Dn,i(troot)

1� Ei(troot)
, (5)

where gi is the prior probability that the root is in state i at time troot. Dn represents the probability den-
sity of the entire tree and the observed sequences at the tips, and thus is the joint likelihood L(S, T |µ, ✓)
we seek; where here µ = {�} and ✓ = {�, d, s}.

This approach ultimately has limited utility for modeling evolution at multiple sites because the
number of possible unique genotypes in sequence space scales with number of sites L as 4L for nucleotide
and 20L for amino acid sequences. The computational complexity of computing the likelihood of a tree
under the MTBD model in turn scales quadratically with the number of possible genotypes (the number
of ODEs scales linearly but the total number of terms in the ODEs scales quadractially), making the
MTBD model impractical for modeling evolution at more than a few sites.

The multi-site fitness birth-death model

We now consider tracking sequence evolution at L sites. At any given site k, we need to compute Dn,k,i,
the probability density of the subtree descending from lineage n given that at site k its state is i. If k is
the only non-neutrally evolving site we are considering, we can use (2) above to track Dn,k,i backwards in
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L(S, T |✓) =
MX

i=1

Dn,i(troot) (1)

P (A|B) =
P (B|A)
P (B)

P (A) (2)

P (sick|+) =
P (+|sick)

P (+)
P (sick) (3)

P (+) = P (+|sick)P (sick) + P (+|healthy)P (healthy) = 0.05 (4)

P (sick|+) =
P (+|sick)

P (+)
P (sick) =

0.95

0.05
0.001 = 0.0187 (5)

P (sick|+) =
P (+|sick)

P (+)
P (sick) (6)

p(✓|data) = L(data|✓)
p(data)

p(✓) (7)

p(✓ = x|data) / L(data|✓ = x)p(✓ = x) (8)

p(data) =
X

✓

L(data|✓)p(✓) (9)

p(data) =

Z

✓

L(data|✓)p(✓)d✓ (10)

At each MCMC iteration m with state x(m) = ✓:

1. Propose ✓⇤ from a proposal density q(✓⇤|✓).

2. Compute the acceptance probability ↵:

↵ =
L(data|✓⇤)p(✓⇤)
L(data|✓)p(✓)

q(✓|✓⇤)
q(✓⇤|✓) (11)

3. If ↵ � 1: accept ✓⇤

Else: accept ✓⇤ with probability ↵

1



The inevitable problem…

• We need to track all possible genotypes in the 
state space of the model, which increases 
exponentially with the number of sites L (e.g. 4L
for a nucleotide model)

• MTBD becomes prohibitively computationally 
expensive for anything more than just a few 
evolving sites.
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which is likely a much better proxy for transmissibility than cellular infectivity, lending support to our
more moderate estimates at the population level.

In future applications, the MFBD could be applied to consider a much larger number of evolving sites
since there is no need to track evolution in genotype space and computation time scales linearly with
the number of sites. Based on our experience, tens or even hundreds of sites may be computationally
feasible, depending on the number of sequences. However, with more sites the genetic background in
which mutations occur grows in complexity due to the increased probability of mutations being linked to
other mutations rather than occurring in isolated genetic backgrounds. This leads to strong correlations
between fitness parameters at di↵erent sites in an increasingly high dimensional parameter space, making
statistical inference challenging, especially using MCMC. Even worse, if two mutations always co-occur in
the same genetic background, their individual e↵ects on fitness will not be mutually identifiable. It may
therefore not be possible to disentangle causative mutations from neutral passenger mutations. Spurious
correlations may also arise due to additional sources of fitness variation beyond sequence changes. For
example, if a mutation occurs along a lineage spreading through a higher fitness environment by chance,
it will likely be inferred to increase fitness even if it is actually neutral. Thus, while the fitness of
di↵erent lineages can be estimated under the MFBD, the fitness e↵ects of individual mutations need to
be interpreted carefully unless they occur in multiple genetic backgrounds and confounding sources of
fitness variation are accounted for.

In spite of these shortcomings, we believe the MFBD model o↵ers a powerful means to explore many
questions not previously possible with strictly neutral phylodynamic models. Even if the fitness e↵ects of
individual mutations are not identifiable, it may still be possible to infer the distribution of fitness e↵ects
across sites, a key determinant of adaptive evolution that has only been explored in a few systems [Eyre-
Walker and Keightley, 2007]. The MFBD model can also be used to compare the fitness of a mutation
or lineage across di↵erent environments, such as in di↵erent hosts of a pathogen. Finally, the MFBD is
not limited to exploring sequence evolution, as the model is generalizable to any discrete character state,
including phenotypic or environmental characters. Thus, our model can be used to explore how multiple
molecular and non-molecular characters interact to shape the overall fitness of lineages in a phylogeny.
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Figure 1. Overview of the marginal fitness birth-death model. (A) Standard phylogenetic
models assume that there is some underlying process by which individuals replicate and give rise to a
phylogeny. Mutations occur along the lineages of the tree, generating the sequence data observed at the
tips. The mutation process is assumed to be independent of tree generating process, such that
mutations do not impact the branching structure of the tree. (B) The MFBD allows us to relax this
assumption, such that mutations at multiple sites feedback and shape both the tree and sequence data.
(C) In the MFBD model, we track the marginal site probabilities ! that a lineage is in a given state at
each site. Our main assumption is that we can use these marginal site probabilities to compute the
probability that a lineage has a certain genotype, such as ACT (Approximation 1). We can then
marginalize over the fitness of each genotype weighted by its approximate genotype probability to
compute the fitness fn of a lineage (Approximation 2). Finally, we need to know the probability En

that a lineage left no other sampled descendants, which we approximate using the probability Eu that a
lineage with same expected fitness u leaves no sampled descendants (Approximation 3).

Taking the limit as �t ! 0, we get a new system of di↵erential equations for Dn,k,i(t):

d

dt
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which is likely a much better proxy for transmissibility than cellular infectivity, lending support to our
more moderate estimates at the population level.

In future applications, the MFBD could be applied to consider a much larger number of evolving sites
since there is no need to track evolution in genotype space and computation time scales linearly with
the number of sites. Based on our experience, tens or even hundreds of sites may be computationally
feasible, depending on the number of sequences. However, with more sites the genetic background in
which mutations occur grows in complexity due to the increased probability of mutations being linked to
other mutations rather than occurring in isolated genetic backgrounds. This leads to strong correlations
between fitness parameters at di↵erent sites in an increasingly high dimensional parameter space, making
statistical inference challenging, especially using MCMC. Even worse, if two mutations always co-occur in
the same genetic background, their individual e↵ects on fitness will not be mutually identifiable. It may
therefore not be possible to disentangle causative mutations from neutral passenger mutations. Spurious
correlations may also arise due to additional sources of fitness variation beyond sequence changes. For
example, if a mutation occurs along a lineage spreading through a higher fitness environment by chance,
it will likely be inferred to increase fitness even if it is actually neutral. Thus, while the fitness of
di↵erent lineages can be estimated under the MFBD, the fitness e↵ects of individual mutations need to
be interpreted carefully unless they occur in multiple genetic backgrounds and confounding sources of
fitness variation are accounted for.

In spite of these shortcomings, we believe the MFBD model o↵ers a powerful means to explore many
questions not previously possible with strictly neutral phylodynamic models. Even if the fitness e↵ects of
individual mutations are not identifiable, it may still be possible to infer the distribution of fitness e↵ects
across sites, a key determinant of adaptive evolution that has only been explored in a few systems [Eyre-
Walker and Keightley, 2007]. The MFBD model can also be used to compare the fitness of a mutation
or lineage across di↵erent environments, such as in di↵erent hosts of a pathogen. Finally, the MFBD is
not limited to exploring sequence evolution, as the model is generalizable to any discrete character state,
including phenotypic or environmental characters. Thus, our model can be used to explore how multiple
molecular and non-molecular characters interact to shape the overall fitness of lineages in a phylogeny.
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Figure 1. Overview of the marginal fitness birth-death model. (A) Standard phylogenetic
models assume that there is some underlying process by which individuals replicate and give rise to a
phylogeny. Mutations occur along the lineages of the tree, generating the sequence data observed at the
tips. The mutation process is assumed to be independent of tree generating process, such that
mutations do not impact the branching structure of the tree. (B) The MFBD allows us to relax this
assumption, such that mutations at multiple sites feedback and shape both the tree and sequence data.
(C) In the MFBD model, we track the marginal site probabilities ! that a lineage is in a given state at
each site. Our main assumption is that we can use these marginal site probabilities to compute the
probability that a lineage has a certain genotype, such as ACT (Approximation 1). We can then
marginalize over the fitness of each genotype weighted by its approximate genotype probability to
compute the fitness fn of a lineage (Approximation 2). Finally, we need to know the probability En

that a lineage left no other sampled descendants, which we approximate using the probability Eu that a
lineage with same expected fitness u leaves no sampled descendants (Approximation 3).

Taking the limit as �t ! 0, we get a new system of di↵erential equations for Dn,k,i(t):
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which is likely a much better proxy for transmissibility than cellular infectivity, lending support to our
more moderate estimates at the population level.

In future applications, the MFBD could be applied to consider a much larger number of evolving sites
since there is no need to track evolution in genotype space and computation time scales linearly with
the number of sites. Based on our experience, tens or even hundreds of sites may be computationally
feasible, depending on the number of sequences. However, with more sites the genetic background in
which mutations occur grows in complexity due to the increased probability of mutations being linked to
other mutations rather than occurring in isolated genetic backgrounds. This leads to strong correlations
between fitness parameters at di↵erent sites in an increasingly high dimensional parameter space, making
statistical inference challenging, especially using MCMC. Even worse, if two mutations always co-occur in
the same genetic background, their individual e↵ects on fitness will not be mutually identifiable. It may
therefore not be possible to disentangle causative mutations from neutral passenger mutations. Spurious
correlations may also arise due to additional sources of fitness variation beyond sequence changes. For
example, if a mutation occurs along a lineage spreading through a higher fitness environment by chance,
it will likely be inferred to increase fitness even if it is actually neutral. Thus, while the fitness of
di↵erent lineages can be estimated under the MFBD, the fitness e↵ects of individual mutations need to
be interpreted carefully unless they occur in multiple genetic backgrounds and confounding sources of
fitness variation are accounted for.

In spite of these shortcomings, we believe the MFBD model o↵ers a powerful means to explore many
questions not previously possible with strictly neutral phylodynamic models. Even if the fitness e↵ects of
individual mutations are not identifiable, it may still be possible to infer the distribution of fitness e↵ects
across sites, a key determinant of adaptive evolution that has only been explored in a few systems [Eyre-
Walker and Keightley, 2007]. The MFBD model can also be used to compare the fitness of a mutation
or lineage across di↵erent environments, such as in di↵erent hosts of a pathogen. Finally, the MFBD is
not limited to exploring sequence evolution, as the model is generalizable to any discrete character state,
including phenotypic or environmental characters. Thus, our model can be used to explore how multiple
molecular and non-molecular characters interact to shape the overall fitness of lineages in a phylogeny.
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feasible, depending on the number of sequences. However, with more sites the genetic background in
which mutations occur grows in complexity due to the increased probability of mutations being linked to
other mutations rather than occurring in isolated genetic backgrounds. This leads to strong correlations
between fitness parameters at di↵erent sites in an increasingly high dimensional parameter space, making
statistical inference challenging, especially using MCMC. Even worse, if two mutations always co-occur in
the same genetic background, their individual e↵ects on fitness will not be mutually identifiable. It may
therefore not be possible to disentangle causative mutations from neutral passenger mutations. Spurious
correlations may also arise due to additional sources of fitness variation beyond sequence changes. For
example, if a mutation occurs along a lineage spreading through a higher fitness environment by chance,
it will likely be inferred to increase fitness even if it is actually neutral. Thus, while the fitness of
di↵erent lineages can be estimated under the MFBD, the fitness e↵ects of individual mutations need to
be interpreted carefully unless they occur in multiple genetic backgrounds and confounding sources of
fitness variation are accounted for.

In spite of these shortcomings, we believe the MFBD model o↵ers a powerful means to explore many
questions not previously possible with strictly neutral phylodynamic models. Even if the fitness e↵ects of
individual mutations are not identifiable, it may still be possible to infer the distribution of fitness e↵ects
across sites, a key determinant of adaptive evolution that has only been explored in a few systems [Eyre-
Walker and Keightley, 2007]. The MFBD model can also be used to compare the fitness of a mutation
or lineage across di↵erent environments, such as in di↵erent hosts of a pathogen. Finally, the MFBD is
not limited to exploring sequence evolution, as the model is generalizable to any discrete character state,
including phenotypic or environmental characters. Thus, our model can be used to explore how multiple
molecular and non-molecular characters interact to shape the overall fitness of lineages in a phylogeny.
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Figure 1. Overview of the marginal fitness birth-death model. (A) Standard phylogenetic
models assume that there is some underlying process by which individuals replicate and give rise to a
phylogeny. Mutations occur along the lineages of the tree, generating the sequence data observed at the
tips. The mutation process is assumed to be independent of tree generating process, such that
mutations do not impact the branching structure of the tree. (B) The MFBD allows us to relax this
assumption, such that mutations at multiple sites feedback and shape both the tree and sequence data.
(C) In the MFBD model, we track the marginal site probabilities ! that a lineage is in a given state at
each site. Our main assumption is that we can use these marginal site probabilities to compute the
probability that a lineage has a certain genotype, such as ACT (Approximation 1). We can then
marginalize over the fitness of each genotype weighted by its approximate genotype probability to
compute the fitness fn of a lineage (Approximation 2). Finally, we need to know the probability En

that a lineage left no other sampled descendants, which we approximate using the probability Eu that a
lineage with same expected fitness u leaves no sampled descendants (Approximation 3).

Taking the limit as �t ! 0, we get a new system of di↵erential equations for Dn,k,i(t):
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substitutions and rearranging the sums in (17), we have:
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Recalling that Dn,k,i =
P

{g2G:gk=i} Dn,g (and by extension Dn,k,j =
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{g2G:gk=j} Dn,g), we have:
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The significance of (19) is twofold. First, we can track sequence evolution at each site individually without
tracking all genotypes. Second, given f̂n,k,i, we can track the overall fitness of a lineage by marginalizing
over the fitness e↵ects of all possible mutations at other sites. We can therefore track sequence evolution
at each site while simultaneously taking into account the coupled fitness e↵ects of mutations at all other
sites on a lineage’s fitness.

Computing f̂n,k,i however still requires us to approximate the genotype probabilities using (12), which
in turn requires the marginal site probabilities !n,k,i. In our notation, !n,k,i represents the conditional
probability p(i|Tn, Sn) that lineage n is in particular state i, where Tn represents the subtree descending
from n with tip sequences Sn. Dn,k,i represents the inverse conditional probability density p(Tn, Sn|i).
We can therefore apply Bayes theorem to compute !n,k,i given Dn,k,i:

!n,k,i = p(i|Tn, Sn) =
p(Tn, Sn|i)q(i)

PM
i p(Tn, Sn|i)q(i)

=
Dn,k,iq(i)PM
i Dn,k,iq(i)

. (20)

The q(i) terms represent the prior probability that the lineage is in state i. Here we make a simplification
in assuming that the tree ancestral and sister to lineage n has no information regarding !n,k,i, and thus
assume a uniform prior on q(i) = 1/M . The q(i) terms therefore cancel above.

Because the fitness of a lineage depends on the state of all sites, we must solve (19) for all sites
simultaneously as one coupled system of di↵erential equations. This requires updating Dn,k,i at each
time step, which suggests the following iterative procedure.

At a tip n observed to be in genotype g, we initialize f̂n,k,i as fg if gk = i or else f̂n,k,i = 0, D̂n,k,i = ds
or ⇢, and !n,k,i = 1 if gk = i, else !n,k,i = 0. Then at each time step backwards through time from time
t to time t + �t, for each site and state we:

1. Update Dn,k,i by numerically integrating (19) over time step �t.

2. Update the marginal site probabilities !n,k,i using (20)

3. Update the expected marginal fitness values f̂n,k,i using (13) or (14).
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The significance of (19) is twofold. First, we can track sequence evolution at each site individually without
tracking all genotypes. Second, given f̂n,k,i, we can track the overall fitness of a lineage by marginalizing
over the fitness e↵ects of all possible mutations at other sites. We can therefore track sequence evolution
at each site while simultaneously taking into account the coupled fitness e↵ects of mutations at all other
sites on a lineage’s fitness.

Computing f̂n,k,i however still requires us to approximate the genotype probabilities using (12), which
in turn requires the marginal site probabilities !n,k,i. In our notation, !n,k,i represents the conditional
probability p(i|Tn, Sn) that lineage n is in particular state i, where Tn represents the subtree descending
from n with tip sequences Sn. Dn,k,i represents the inverse conditional probability density p(Tn, Sn|i).
We can therefore apply Bayes theorem to compute !n,k,i given Dn,k,i:

!n,k,i = p(i|Tn, Sn) =
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The q(i) terms represent the prior probability that the lineage is in state i. Here we make a simplification
in assuming that the tree ancestral and sister to lineage n has no information regarding !n,k,i, and thus
assume a uniform prior on q(i) = 1/M . The q(i) terms therefore cancel above.

Because the fitness of a lineage depends on the state of all sites, we must solve (19) for all sites
simultaneously as one coupled system of di↵erential equations. This requires updating Dn,k,i at each
time step, which suggests the following iterative procedure.

At a tip n observed to be in genotype g, we initialize f̂n,k,i as fg if gk = i or else f̂n,k,i = 0, D̂n,k,i = ds
or ⇢, and !n,k,i = 1 if gk = i, else !n,k,i = 0. Then at each time step backwards through time from time
t to time t + �t, for each site and state we:

1. Update Dn,k,i by numerically integrating (19) over time step �t.

2. Update the marginal site probabilities !n,k,i using (20)

3. Update the expected marginal fitness values f̂n,k,i using (13) or (14).
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Adaptation of Ebola virus to humans 

Urbanowicz et al. (Cell, 2016)

N-glycosylation branching at N204 and N228, respectively,
strongly increased GP entry in human cells. Subsequent substi-
tutions in the T230A cluster of EBOV sequences, such as T485A
(variant B14) in the mucin-like domain of GP or D637G at the end
of GP2 (variant B16), did not appear to modulate viral entry
further. Within the more geographically restricted lineage A,
variant A1, containing a single W291R substitution in the glycan
cap, resulted in a marked increase in entry efficacy in HuH7 and
BEAS-2B cells (Figure 3; p < 0.01).
These data also revealed the importance of epistatic interac-

tions to viral adaptation. In lineage A, we observed strong posi-
tive epistasis involving residue 330. Specifically, following an
initial G480D change, a P330S substitution occurred with either
N107D (variant A6) or H407Y after a reversion of G480D (variant
A5; Figure 1). Strikingly, the co-occurrence of P330Swith G480D

evolved independently in lineage B (Data S1), compatible with
the idea that, in combination, these mutants increase fitness.
Indeed, in our HuH7 entry assay, mutants A5 and A6 were
significantly more entry efficient than the reference Kissidou-
gou-C15 strain (Figure 3; p < 0.05 and p < 0.01, respectively).
In contrast, variants with the P330S substitution alone (mutant
A02), or in combination with either G480D (mutant A03) or
N107D (mutant A04), were all less infectious than the reference
sequence in HuH7 cells (p < 0.05); none of these changes were
sampled during the outbreak.
The impact of epistasis can also be seen within lineage B

involving glycan cap domain residues P202L and L239S. While
the initial P202L substitution (variant B4) decreased infectivity
in HuH7 cells compared to the A82V mutant, the subsequent
emergence of L239S (variant B6), which occurred in two different
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Figure 2. Schematic of the 17 Lineage-Defining Amino Acid Combinations in the EBOV GP
Amino acid changes identified on the EBOV Makona phylogeny presented in Figure 1 are shown in black. The GP scheme is drawn to scale. SP: signal peptide;

RBD: receptor binding domain; MLD:mucin-like domain; IFL: internal fusion loop; HR: heptad repeat; TM: transmembrane domain. Also indicated to the left of the

alignment is the assigned variant name, where A and B denote lineage A (82A) and B (82V) backgrounds, respectively. Prime (0) indicates variants not sampled

during the outbreak and AB0 has been used to identify variants generated to investigate the impact of 82A background on lineage-B-defined substitutions. On the

right-hand side, the specific combination of amino acid substitutions compared to the reference strain. Colors relate to the lineages identified in Figure 1.
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branches within this cluster (Data S1), resulted in significantly
higher infectivity than the A82V change alone in all human cell
lines tested (p < 0.01). Importantly, the L239S substitution alone,
which was not observed during the outbreak, did not result in
increased entry (variant B05; Figure 3). This again suggests that
fitness increases result from epistatic interactions.

GP residue 82was also seemingly involved in epistatic interac-
tions. For example, the I371V change (variant B2), which defines
a large cluster of sequences from Sierra Leone (Data S1),

increased entry efficacy up to 2-fold in the 82V background (line-
age B). However, in the context of the 82A background that
defines lineage A, I371V (variant AB03) decreased HuH7 cell
infectivity (p < 0.001). The AB03 variant was not sampled during
the outbreak. Conversely, the presence of P375S, in association
with 82A, increased infectivity (variant AB011) but decreased
infectivity in the presence of 82V (variant B10; Figure 3).
While the majority of amino acid substitutions observed in the

outbreak improved human cell entry, some changes in lineage B,

Figure 3. Differential Infectivity of Pseudoviruses Supplemented with EBOV Makona GP Mutants in Human Cells
(A–C) Relative infectivity of each glycoprotein was expressed as a proportion (%) of that observed for the Kissidougou-C15 strain in HuH7 (A), BEAS-2B (B), and

A549 (C) cells. Histogrambar colors correspond to the lineage color-coding shown in Figure 1, with gray bars indicating variants not sampled during the outbreak.

These data are the means ± 1 SD of either two (non-sampled variants) or three (sampled variants) independent experiments, each performed in triplicate.

Differences in the mean infectivity of each outbreak-associated mutant compared to the Kissidougou-C15 EBOV strain and the lineage B viruses to the A82V

mutant were assessed using repeated-measures one-way ANOVA with Dunnett’s multiple comparison test and indicated in the table inset; *p < 0.05; **p < 0.01;

***p < 0.001; n.s., not significant.

(D–F) Plots of normalized infectivity for the three human cell lines and correlations were calculated using Pearson’s correlation test. See also Figure S2.
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Current and ongoing work 

• Marginal Fitness Birth Death model is 
implemented in LUMIERE, a package for BEAST2. 

• High performance phylodynamic inference using 
Generalized Birth-Death Models



Generalized Birth-Death Models 

• We would like to be able to learn how pathogen 
traits map to birth-death fitness parameters: 

ACACACCTACAGACTTACAGACCC
TCACACCTACACACCCACAGACTT

ACAGACTTTCAGACTTTCAGACCC
TCAGACTTTCACACCTTCAGACCT

TCACACCTACACACCCACAGACTT
TCAGACTTTCACACCTTCAGACCT
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We all have one thing in common… 

All of us use genomic sequencing data 
to answer questions in BEAST

?
BEAST2



Can we have the best of both worlds? 

• Can we perform likelihood-based phylodynamic
inference under birth-death models

• While using the tools of machine learning to 
learn how pathogen features (e.g. genotypes) map 
to population-level parameters?



Phylodynamics in TensorFlow 

• Trees can be represented as computational graphs 
in TensorFlow with data arrays (i.e. tensors) 
flowing between nodes



Phylodynamics in TensorFlow 

Convert tree to tensor-like object

Specify birth-death model

Specify fitness model

Specify loss function

Set up 
optimizer

Run!!!



Specify loss function



Fitness model for H3N2 influenza 



Phylodynamics vs. Deep Mutational Scanning 

• Very small fitness effects once we account for 
seasonal fluctuations in flu transmission
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The marginal fitness birth-death model 

• We now have a new system of ODEs for tracking 
the probability that a lineage evolved exactly 
as observed at each site k:

• Note 1: We can track evolution at each site 
individually without tracking all genotypes.
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substitutions and rearranging the sums in (17), we have:
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Recalling that Dn,k,i =
P

{g2G:gk=i} Dn,g (and by extension Dn,k,j =
P

{g2G:gk=j} Dn,g), we have:

d

dt
Dn,k,i(t) = �

0
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(19)

The significance of (19) is twofold. First, we can track sequence evolution at each site individually without
tracking all genotypes. Second, given f̂n,k,i, we can track the overall fitness of a lineage by marginalizing
over the fitness e↵ects of all possible mutations at other sites. We can therefore track sequence evolution
at each site while simultaneously taking into account the coupled fitness e↵ects of mutations at all other
sites on a lineage’s fitness.

Computing f̂n,k,i however still requires us to approximate the genotype probabilities using (12), which
in turn requires the marginal site probabilities !n,k,i. In our notation, !n,k,i represents the conditional
probability p(i|Tn, Sn) that lineage n is in particular state i, where Tn represents the subtree descending
from n with tip sequences Sn. Dn,k,i represents the inverse conditional probability density p(Tn, Sn|i).
We can therefore apply Bayes theorem to compute !n,k,i given Dn,k,i:

!n,k,i = p(i|Tn, Sn) =
p(Tn, Sn|i)q(i)

PM
i p(Tn, Sn|i)q(i)

=
Dn,k,iq(i)PM
i Dn,k,iq(i)

. (20)

The q(i) terms represent the prior probability that the lineage is in state i. Here we make a simplification
in assuming that the tree ancestral and sister to lineage n has no information regarding !n,k,i, and thus
assume a uniform prior on q(i) = 1/M . The q(i) terms therefore cancel above.

Because the fitness of a lineage depends on the state of all sites, we must solve (19) for all sites
simultaneously as one coupled system of di↵erential equations. This requires updating Dn,k,i at each
time step, which suggests the following iterative procedure.

At a tip n observed to be in genotype g, we initialize f̂n,k,i as fg if gk = i or else f̂n,k,i = 0, D̂n,k,i = ds
or ⇢, and !n,k,i = 1 if gk = i, else !n,k,i = 0. Then at each time step backwards through time from time
t to time t + �t, for each site and state we:

1. Update Dn,k,i by numerically integrating (19) over time step �t.

2. Update the marginal site probabilities !n,k,i using (20)

3. Update the expected marginal fitness values f̂n,k,i using (13) or (14).



The marginal fitness birth-death model 

• We now have a new system of ODEs for tracking 
the probability that a lineage evolved exactly 
as observed at each site k:

• Note 2: We can simultaneously take into account 
the coupled fitness effects of mutations at all 
other sites.
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The significance of (19) is twofold. First, we can track sequence evolution at each site individually without
tracking all genotypes. Second, given f̂n,k,i, we can track the overall fitness of a lineage by marginalizing
over the fitness e↵ects of all possible mutations at other sites. We can therefore track sequence evolution
at each site while simultaneously taking into account the coupled fitness e↵ects of mutations at all other
sites on a lineage’s fitness.

Computing f̂n,k,i however still requires us to approximate the genotype probabilities using (12), which
in turn requires the marginal site probabilities !n,k,i. In our notation, !n,k,i represents the conditional
probability p(i|Tn, Sn) that lineage n is in particular state i, where Tn represents the subtree descending
from n with tip sequences Sn. Dn,k,i represents the inverse conditional probability density p(Tn, Sn|i).
We can therefore apply Bayes theorem to compute !n,k,i given Dn,k,i:
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The q(i) terms represent the prior probability that the lineage is in state i. Here we make a simplification
in assuming that the tree ancestral and sister to lineage n has no information regarding !n,k,i, and thus
assume a uniform prior on q(i) = 1/M . The q(i) terms therefore cancel above.

Because the fitness of a lineage depends on the state of all sites, we must solve (19) for all sites
simultaneously as one coupled system of di↵erential equations. This requires updating Dn,k,i at each
time step, which suggests the following iterative procedure.

At a tip n observed to be in genotype g, we initialize f̂n,k,i as fg if gk = i or else f̂n,k,i = 0, D̂n,k,i = ds
or ⇢, and !n,k,i = 1 if gk = i, else !n,k,i = 0. Then at each time step backwards through time from time
t to time t + �t, for each site and state we:

1. Update Dn,k,i by numerically integrating (19) over time step �t.

2. Update the marginal site probabilities !n,k,i using (20)

3. Update the expected marginal fitness values f̂n,k,i using (13) or (14).



The marginal fitness birth-death model 

• We now have a new system of ODEs for tracking 
the probability that a lineage evolved exactly 
as observed at each site k:

• Note 3: Tracking Dn,k,i all the way back to the 
root allows us to compute the joint likelihood 
of the tree and the sequence data at site k.

8

substitutions and rearranging the sums in (17), we have:

d

dt
Dn,k,i(t) = � (f̂n,k,i�0 +

MX

j=1

�i,j + d)
X

{g2G:gk=i}

Dn,g(t)

+ 2f̂n,k,i�0Eu(t)
X

{g2G:gk=i}

Dn,g(t)

+
MX

j=1

�i,j

X

{g02G:g0
k=j}

Dn,g0

(18)

Recalling that Dn,k,i =
P

{g2G:gk=i} Dn,g (and by extension Dn,k,j =
P

{g2G:gk=j} Dn,g), we have:

d

dt
Dn,k,i(t) = �

0

@f̂n,k,i�0 +
MX

j=1

�i,j + d

1

A Dn,k,i(t)

+ 2f̂n,k,i�0Eu(t)Dn,k,i(t)

+
MX

j=1

�i,jDn,k,j(t).

(19)

The significance of (19) is twofold. First, we can track sequence evolution at each site individually without
tracking all genotypes. Second, given f̂n,k,i, we can track the overall fitness of a lineage by marginalizing
over the fitness e↵ects of all possible mutations at other sites. We can therefore track sequence evolution
at each site while simultaneously taking into account the coupled fitness e↵ects of mutations at all other
sites on a lineage’s fitness.

Computing f̂n,k,i however still requires us to approximate the genotype probabilities using (12), which
in turn requires the marginal site probabilities !n,k,i. In our notation, !n,k,i represents the conditional
probability p(i|Tn, Sn) that lineage n is in particular state i, where Tn represents the subtree descending
from n with tip sequences Sn. Dn,k,i represents the inverse conditional probability density p(Tn, Sn|i).
We can therefore apply Bayes theorem to compute !n,k,i given Dn,k,i:

!n,k,i = p(i|Tn, Sn) =
p(Tn, Sn|i)q(i)

PM
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=
Dn,k,iq(i)PM
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The q(i) terms represent the prior probability that the lineage is in state i. Here we make a simplification
in assuming that the tree ancestral and sister to lineage n has no information regarding !n,k,i, and thus
assume a uniform prior on q(i) = 1/M . The q(i) terms therefore cancel above.

Because the fitness of a lineage depends on the state of all sites, we must solve (19) for all sites
simultaneously as one coupled system of di↵erential equations. This requires updating Dn,k,i at each
time step, which suggests the following iterative procedure.

At a tip n observed to be in genotype g, we initialize f̂n,k,i as fg if gk = i or else f̂n,k,i = 0, D̂n,k,i = ds
or ⇢, and !n,k,i = 1 if gk = i, else !n,k,i = 0. Then at each time step backwards through time from time
t to time t + �t, for each site and state we:

1. Update Dn,k,i by numerically integrating (19) over time step �t.

2. Update the marginal site probabilities !n,k,i using (20)

3. Update the expected marginal fitness values f̂n,k,i using (13) or (14).

L(Sk, T |✓) =
MX
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Dn,k,i(troot) (1)
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P (sick|+) =
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p(data) =

Z

✓

L(data|✓)p(✓)d✓ (11)

At each MCMC iteration m with state x(m) = ✓:

1. Propose ✓⇤ from a proposal density q(✓⇤|✓).

2. Compute the acceptance probability ↵:

↵ =
L(data|✓⇤)p(✓⇤)
L(data|✓)p(✓)

q(✓|✓⇤)
q(✓⇤|✓) (12)
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‘‘bulk’’ of the GP-A82Vmutationmay alter the a1 helix conforma-
tion, to provide better access for proximal resides, such as GP-
V79, -P80, -T83, and -W86, to interact with NPC1 (Wang et al.,
2016). Compared to the human NPC1 loop 2 domain, the inclu-
sion of hydrophobic side chains at site 499 (valine or isoleucine)
in other mammals (non-primates) probably adds more bulk near
the backbone, potentially restricting how the loop can adapt to
new conformations. Primates also possess a phenylalanine at
amino acid 504, while several other species have a tyrosine.

Changes between phenylalanine and tyrosine are common,
differing only by an ortho hydrogen (phenylalanine) or hydroxyl
group (tyrosine) on the benzene ring, and both are generally
non-reactive and rarely involved in protein function. F504, how-
ever, is predicted to make contact with up to eight residues on
EBOV GP (measured by a distance of <4.5 Å [Wang et al.,
2016]) and is potentially a critical site for filovirus susceptibility
(Zhao et al., 2016). In addition to the effects the A82V substitution
could impart to NPC1/GP interactions, it may also alter the

Figure 6. Association between GP-A82V and Increased Rate of Lethal Infection
(A and B) Spatial distribution of GP genotypes for all available EBOV Makona sequencing data (A) or Guinean isolates linked to information regarding clinical

outcome and viral load (B). The data included in (B) were used in subsequent modeling analyses.

(C) Association between patient viral load (as determined by C(t) values) and EVD-associated mortality. This analysis used all observations for which C(t) values

were measured (n = 313).

(D) Viral load information (as determined byC(t) values) in individuals infectedwith EBOV encoding either ancestral or A82VGP. This analysis used all observations

for which C(t) values were measured (A82: n = 97; V82: n = 216).

Plots in (C) and (D) show mean with the box covering from the second to third quartile (25%–75%) of samples, and the bars marking the 5% and 95% quantiles.

Dots represent samples outside of the 95% probability region.

(E) Mortality data in individuals infected with EBOV encoding either ancestral or A82V GP.

(F) Depiction of the correlation between GP genotype andmortality, based on results of a binomial generalized linear model using C(t) values and GP genotype as

covariates to predict case fatality rates over a range of viral loads (depicted by transformed C(t) values). C(t) values were transformed by subtracting the mean,

dividing by two standard deviations and flipping the sign such that the value 0 in the graph corresponds to the average C(t) value and the transformed variable

reflects viral load.

See also Figure S1.
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