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HIV Incidence

Important indicator for the success of public health programs.

Difficult to measure, because people infected with HIV may
be asymptomatic for as long as 8 years.

Currently estimated using back-calculation methods or
longitudinal cohort studies.

Our goal is to develop a method for estimating HIV incidence
from existing public health and medical data.
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Data Sources
British Columbia

Reconciled Ministry of Health, BC Centre for Disease Control,
and BC-CfE Drug Treatment Program data on new HIV
diagnoses, mortality, immigration, and emigration.

Drug treatment program data on number of patients receiving
HAART and number virally suppressed.

BC-CfE viral genetic data from genotypic drug resistance
tests.
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Algorithm
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HIV Transmission Model
Overview

Susceptible

Death

HIV+
Undiagnosed

Death

HIV+
Diagnosed

Death

The change in the number of prevalent HIV cases is the result
of HIV+ individuals being added and removed from the
population.
New HIV infections are generated by transmission from both
diagnosed and undiagnosed HIV+ individuals.
HIV+ individuals are removed from the population through
death — both AIDS related and other causes.
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HIV Transmission Model
Number of New Infections

The number of HIV+ individuals N is given by
dN
dt = e(1 − αT )N + pb ph eαT N − d(1 − αT )N − D + Fd + Fu

αT = fraction of the HIV+ subpopulation that is diagnosed
e = number of new HIV infections generated by each undiagnosed

HIV+ individual per unit time
pb = factor by which the undiagnosed transmission rate is reduced

after diagnosis
1 − ph = diagnosed fraction of HIV+ subpopulation who are on HAART

and virally suppressed
d = per person all cause death rate for individuals with undiagnosed

HIV infection
D = all cause death rate for individuals with diagnosed HIV infection
Fu = net immigration for undiagnosed HIV+ individuals
Fd = net immigration for diagnosed HIV+ individuals
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HIV Transmission Model
Fraction Diagnosed

The fraction diagnosed of the HIV+ subpopulation is given by

dαT
dt = α2

T

((
1 − pb

(
1 − heff

H
M

))
e − d − Fd + Fu − D

M

)

+ αT

(
d − e +

Fd + T − D
M

)

H = number of diagnosed on HAART
heff = fraction virally suppressed on HAART
M = number of people known to be living with HIV/AIDS
T = rate of new HIV diagnosis
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HIV Transmission Model
Bernoulli Differential Equation

The equation for αT has the form of the Bernoulli differential
equation:

dαT
dt + p(t)αT (t) = q(t)α2

T (t)

Can be solved by integrating factors.

However, p(t) and q(t) are only known as data time series.
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HIV Transmission Model
Numerical Analysis

The differential equation for αT is solved numerically using
Euler’s method.

It has three free parameters:

e = number of new HIV infections generated by each HIV+
individual per unit time

pb = factor by which the undiagnosed transmission rate is
reduced after diagnosis

α0 = value of αT at an arbitrary “initial” or reference time t0
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Genetic Distance Model
Overview

Utilises viral RNA sequence data from genotypic drug
resistance tests, which are done for every new diagnosis.

HIV evolves continually and its genetic sequence diverges from
a given ancestor with each transmission.

As the fraction diagnosed increases it becomes more likely
that a sequence and its closes ancestor are both in the genetic
database.
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Genetic Distance Model
Transmission Network

Genetic distance computations
using genotypic drug resistance
data can be used to construct
the HIV transmission network.

Constructing the transmission
network for a large population
is very computationally
expensive.

Do we really need to
construct the network?

Diagnosed

Undiagnosed

New Infection?
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Genetic Distance Model
Population Genetic Distance

r(t) = ave
i at

time t

 min
j at time
τ < t

g(i , j)


where g(i , j) is the Tamura-Nei
genetic distance between virus i
and virus j .

K. Tamura and M. Nei, Mol Biol Evol, 10
(1993).
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Genetic Distance Model
Fraction Diagnosed

The fraction diagnosed as a function of the population genetic
distance has the form of a decreasing function from 1 to 0.

This family of functions is modelled by

αG(r) = e−crk

where c > 0 and k > 0 are free parameters.
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Optimisation and Monte Carlo Simulations

Tabu search is used to find the values of the 5 parameters e, pb,
α0, c, and k that minimise the objective function

F (α0, e, pb, c, k) =
∑

i

(
αT (α0, e, pb; ti) − αG(c, k; ti)

)2
α′G(ti)

.

A bias is introduced into the solution for αT by the choice of
reference time t0. A Monte Carlo simulation is done in which the
optimisation is repeated for randomly chosen t0.

The results of the Monte Carlo are used to calculate α, HIV
prevalence, and HIV incidence. The empirical distribution of
Monte Carlo results is used to calculate confidence intervals.
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Optimisation
Results of One Tabu Search

A single tabu search result for the fraction diagnosed from the
transmission model αT to a spline-smoothing of the fraction
diagnosed from the genetic distance model αG .
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Monte Carlo Simulations

Results of the Monte Carlo simulation for 71 tabu search
optimisations with randomly chosen reference times t0 for the
transmission model.

Fraction Diagnosed HIV Incidence
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Diagnosed Fraction of HIV+ Subpopulation
British Columbia

Model results for the fraction of the HIV+ subpopulation in British
Columbia that was diagnosed from 2000 to 2010.
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HIV Prevalence
British Columbia

Comparison of model results for HIV prevalence in British Columbia
to the number of people known to be living with HIV/AIDS.
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HIV Incidence

HIV incidence may be obtained from the model results for α, the
fraction diagnosed, using the equation

I = Me
(
1
α

− 1+ pb

(
1 − heff

H
M

))

where

M = number of people known to be living with HIV/AIDS
pb = factor by which the undiagnosed transmission rate is

reduced after diagnosis
heff = fraction virally suppressed on HAART

H = number of diagnosed on HAART
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HIV Incidence
British Columbia

Comparison of model results for HIV incidence in British Columbia
to the number of new diagnoses.
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Validation

Parameter	   Es*mate	  from	  
Model	  

Es*mate	  from	  
Literature	  

Reference	  

Propor%on	  diagnosed	  in	  2002	   0.80	   0.76	   PHAC	  2006	  

Propor%on	  diagnosed	  in	  2005	   0.82	   0.79	   PHAC	  2006	  

Propor%on	  diagnosed	  in	  2008	   0.83	   0.81	   PHAC	  2008	  

Reduc%on	  in	  transmission	  due	  
to	  behaviour	  change	  aCer	  

diagnosis	  (pb)	  

0.45	   0.29	   Marks,	  et	  al.,	  AIDS,	  
2006	  

Transmission	  rate	  for	  
undiagnosed	  (e)	  

0.11	   0.069	   Marks,	  et	  al.,	  AIDS,	  
2006	  

HIV	  incidence	  in	  2005	   548	   320	  -‐	  620	   BCCDC	  2010	  

HIV	  incidence	  in	  2008	   538	   280	  -‐	  540	   BCCDC	  2010	  

HIV	  prevalence	  in	  2005	   10,560	   10,350	  
(8,300	  –	  12,400)	  

BCCDC	  2010	  
	  

HIV	  prevalence	  in	  2008	   11,108	   11,400	  
(9,300	  –	  13,500)	  

BCCDC	  2010	  
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Future Work

Analyse more recent data from British Columbia
STOP HIV/AIDS programme data

Time-dependent model parameters
requires sufficient data

Apply to other jurisdictions

Compare to other methods for estimating HIV incidence
retrospective cohort studies

often focused on specific risk groups

incidence assays
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