The geography of measles vaccination in the African Great Lakes region

Saki Takahashi Department of Ecology and Evolutionary Biology Princeton University 20 April 2017

Measles control and elimination

- Measles control is one of the most cost-effective public health interventions
- Substantial gains made in measles vaccination coverage over recent decades

Percent vaccination coverage (%)

Source: WHO / UNICEF coverage estimates, 1980-2010 as of August 2011

• All WHO regions currently target measles elimination by 2020

Global M&R Strategic Plan (2012)

Recent resurgence of measles in sub-Saharan Africa

No data reported

MMWR (2011)

A shifting focus

- A milestone for 2015: to increase routine coverage with MCV-1 for children aged 1 year to at least 90% nationally, and at least 80% in every district by every member state (World Health Assembly, 2010)
- Patches of unvaccinated people living in close proximity are more likely to sustain a measles epidemic, compared to the same number of unvaccinated people evenly distributed throughout a country
- The degree to which susceptible children cluster spatially is a key question for targeting control measures

Wallinga, Heijne, Kretzschmar (2005) PLOS Med

Spatial clustering of susceptibility to vaccine-preventable diseases

- Disruption in health care services associated with the West African Ebola epidemic → large connected cluster of children unvaccinated against measles
- In general, decrease in vaccination coverage affects potential for:
 - Continuing circulation of virus (countries nearing elimination)
 - Outbreaks after re-introduction (countries that have achieved elimination)

Takahashi et al (2015) Science

The geography of measles vaccination in the African Great Lakes region

- 1. Leverage existing data sources to map vaccination coverage
- 2. Identify foci for elimination efforts
- 3. Inform the spatial scale at which vaccination policy could be effectively implemented

0-5 years

Takahashi et al (2017) Accepted

Delivery of measles vaccination

- Routine immunization (local health centers) target children at 9 months of age for MCV-1
- Supplementary immunization activities (SIAs) are periodically conducted to reach those missed by routine immunization
 - National
 - Sub-national

Trésor calls to every family: "Come protect your children against measles!"

MARK + Arreter COC unicef COURTENTION (CORPORATION

measlesrubellainitiative.org

Demographic and Health Surveys (DHS), 2009-2014

Country	DHS survey start date	DHS survey end date	Children in survey, 6-60 months
Burundi	08/2010	01/2011	6,661
DRC	08/2013	02/2014	14,321
Kenya	05/2014	10/2014	18,311
Malawi	06/2010	09/2010	16,379
Mozambique	05/2011	12/2011	9,369
Rwanda	09/2010	04/2011	7,883
Tanzania	12/2009	05/2010	6,592
Uganda	06/2011	12/2011	6,580
Zambia	08/2013	04/2014	11,659
Zimbabwe	09/2010	03/2011	4,494

Demographic and Health Surveys (DHS), 2009-2014

The geography of measles vaccination in the African Great Lakes region

- 1. Leverage existing data sources to map vaccination coverage
- 2. Identify foci for elimination efforts
- 3. Inform the spatial scale at which vaccination policy could be effectively implemented

Estimating vaccination coverage, by country

 Logistic regression in a GAM: vaccination status of child *i*, with covariates for location, survey age, and eligibility for sub-national SIA *j* (from DHS)

$$logit(v_i) = s(long_i, lat_i) + s(age_i) + \sum_j c_{ij}$$

- Overlay 10 km x 10 km grid across the country, and interpolate expected value at each grid cell (outcome: predicted coverage at a given age)
- Grid cells with < 80% coverage at a certain age is defined as a 'coldspot' for that age

worldpop.org.uk

Maps: vaccination coverage

a. Mean proportion of children 24 months of age who are vaccinated

b. Grid cells with < 80% estimated coverage for children 24 months of age

Map: uncertainty

Coldspots boundaries

Proportion of the distribution of estimated mean measles vaccination coverage at 24 months of age that is < 80%

Maps: density of unvaccinated children

a. Number of children 6-24 months of age per grid cell who are unvaccinated

b. Number of children 6-60 months of age per grid cell who are unvaccinated

Maps: vaccination coverage by age + population density

Long-term coldspots

a. Proportion of monthly age cohorts that each grid cell exists as a 'coldspot' between 12-60 months of age (49 total age cohorts), showing all cells **b.** Same as left, but showing only grid cells with at least 500 children under 60 months of age

The geography of measles vaccination in the African Great Lakes region

- 1. Leverage existing data sources to map measles vaccination coverage
- 2. Identify foci for elimination efforts
- 3. Inform the spatial scale at which vaccination policy could be effectively implemented

Spatial variation within countries – DRC

Spatial variation within countries

Country	Adm 1 ICC	Adm 2 ICC	Adm 3 ICC	Residual ICC
	(e.g., provinces)	(e.g., districts)	(e.g., municipalities)	(95% CI)
	(95% CI)	(95% CI)	(95% CI)	
Burundi	0.5798	0.1668	<0.0001	0.2535
	(0.3169-0.7058)	(0.0891-0.3015)	(0.0000-0.0723)	(0.1615-0.4049)
DRC	0.2404	0.3582	0.2856	0.1158
	(0.0000-0.4656)	(0.1685-0.5681)	(0.1969-0.4422)	(0.0867-0.1779)
Kenya	0.8271	0.1044	0.0354	0.0331
	(0.7478-0.8763)	(0.0725-0.1537)	(0.0250-0.0530)	(0.0241-0.0483)
Malawi	0.5015	0.2759	0.0064	0.2163
	(0.3187-0.6203)	(0.2013-0.3888)	(0.0000-0.0315)	(0.1635-0.2998)
Mozambique	0.5506	0.3736	0.0443	0.0315
	(0.2213-0.7106)	(0.2391-0.6481)	(0.0290-0.0811)	(0.0209-0.0557)
Rwanda	0.3186	0.4210	0.1468	0.1136
	(0.0000-0.5849)	(0.2100-0.6896)	(0.0842-0.2848)	(0.0693-0.2190)
Tanzania	0.7474	0.1364	0.0556	0.0606
	(0.6063-0.8253)	(0.0895-0.2197)	(0.0388-0.0881)	(0.0434-0.0948)
Uganda	0.7765	0.1018	0.0404	0.0813
	(0.6782-0.8347)	(0.0648-0.1583)	(0.0281-0.0608)	(0.0613-0.1145)
Zambia	0.3469 (0.0679-0.5338)	0.4055 (0.2630-0.5982)	NA	0.2476 (0.1812-0.3769)
Zimbabwe	0.6098 (0.2145-0.7668)	0.2274 (0.1196-0.4874)	NA	0.1628 (0.1008-0.3255)

Conclusions

- Estimated 10 million children unvaccinated against measles in the region between 6-60 months of age
- Numbers of unvaccinated children highlight areas where targeting vaccination efforts may be most costeffective (left)
- Areas of high population density + consistently low vaccination coverage pose the greatest risk: if linked, may potentially sustain local transmission (right)

 Targeting of efforts at the largest sub-national administrative unit (provinces) would account for majority of sub-national variation in coverage

github.com/sakitakahashi/coldspots

Ongoing work

 But, mapping of susceptible children is complicated by acquisition of immunity via natural infection

Acknowledgements

Jessica Metcalf, Bryan Grenfell (Princeton) Heidi Robbins (Princeton)

Justin Lessler (Johns Hopkins) Matt Ferrari (Penn State) Andy Tatem (Southampton)

BILL& MELINDA GATES foundation

Thank you!