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• We will now demonstrate the Bayesian techniques for analysing complex

models described in Part 1.

• We will apply them to two stochastic, agent based models of HIV (currently

applying to one of Typhoid).

• Mukwano: intermediate sized model.

• Mukwano with benefits: Large model.

• We will describe the core scientific questions a modeller may wish to

answer.
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Overview of Part 2

• First major question: Is the model currently consistent with the observed

measurements? To answer this we require:

- Emulation of the model (to combat the speed and dimension problem)

- Implausibility Measures (using observed errors and model discrepancy)

- Iterative history matching (a Global parameter search).

• Second major question: what is the set of all input parameters that

produced model outputs consistent with known measurement.

• We will identify and analyse this set.

• This can then be used to make future predictions, to analyse effects of

interventions and to design future data collection.
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• Going to History Match an HIV disease model known as Mukwano.

• This involves learning about acceptable inputs x to the Mukwano model,

using observed data z.

• We use emulators and implausibility measures to cut out input space

iteratively.

• We will discuss relevant uncertainties: model discrepancy, observational

errors, function uncertainty etc.

• The History Matching approach described is completely general, and can

be used for any model that is relatively slow to run and has lots of inputs.

Andrianakis, I., Vernon, I., McCreesh, N., McKinley, T.J., Oakley, J.E., Nsubuga, R.,

Goldstein, M., White, R.G.: Bayesian history matching of complex infectious disease models

using emulation: A tutorial and a case study on HIV in uganda. PLoS Comput Biol. 11(1),

1003968 (2015)
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Why History Match?

• History Matching is an efficient technique that seeks to identify the set X of

all acceptable inputs x.

• Often X only occupies a tiny fraction of the original input space.

• This set X may be empty: we do not presuppose that any such inputs exist.

• This is the main difference between History Matching and the related

technique of Probabilistic Bayesian Calibration.

• The later is a useful technique, but assumes a single ‘best input’ x∗ and

gives its posterior distribution π(x∗|z), via the standard Bayesian update,

using e.g. MCMC.

• This involves the specification of many complex multivariate distributions

related to all uncertain quantities of interest, which may or may not be

warranted at this stage.
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Mukwano Model description

• A dynamic, stochastic, individual based model that simulates heterosexual

sexual partnerships and HIV transmission.

• 22 input parameters inc. contact rates, concurrency parameters,

relationship duration, 2 sexual activity groups (high/low), 2 concurrency

groups (high/low), 3 discrete behaviour periods.

• 18 outputs inc. population size, HIV prevalence, prevalence of men and

women in long/short duration partnerships with one or more partners.

• Run time varies from 10 mins to >3 hours for 1 simulator run.

• Calibration data provided by a general population cohort in Uganda.
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Plots of output: 1D example

• One “model run” with the input parameter x = 0.4

• If we did not know the analytic solution for f(x, t) this would be generated

by numerically solving the differential equation.
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• These designs are both space filling and approximately orthogonal, both

desirable features for fitting emulators.

• We evaluated 250 runs of the model for the first Wave.
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• Major question: which values of x ensure the output f(x, t = 3.5) is

consistent with the observations?

• It would seem that x has to be at least between 0.3 and 0.4.



Observed data: 1D example

• To answer this, we can now discard other values of f(x, t) and think of

f(x, t = 3.5) as a function of x only.



Observed data: 1D example

• To answer this, we can now discard other values of f(x, t) and think of

f(x, t = 3.5) as a function of x only.

• That is take f(x) ≡ f(x, t = 3.5)
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• We can now plot the concentration f(x) as a function of the input

parameter x.

• Black horizontal line: the observed measurement of Y
• Dashed horizontal lines: the measurement errors
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Observed errors and Model Discrepancy: 1D example

• Uncertainty in the measurement of f(x, t) leads to uncertainty in the

inferred values of x.

• Hence we see a range (green/yellow) of possible values of x consistent with

the measurements, with all the implausible values of x in red.
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Observed errors and Model Discrepancy: 1D example

• Another important form of uncertainty is that of model discrepancy related

to how accurate we believe the model to be.

• This uncertainty arises from many issues: is the form of model appropriate,

is the model a simplified description of a more complex system etc?
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• Model discrepancy is represented as uncertainty around the model output

f(x) itself: here the purple dashed lines.

• This results in more uncertainty in x, and hence a larger range of x values.
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• We represent the model as a function, which maps the vector of 22 inputs x
to the vector of 18 outputs f(x).

• We use the “Best Input Approach” to link the model f(x) to the real system

y (i.e. the real Uganda) via:

y = f(x∗) + ǫ

where we define ǫ to be the model discrepancy and assume that ǫ is

independent of f and x∗.

• Finally, we relate the true system y to the observational data z by,

z = y + e

where e represent the observational errors.

• We will use the Bayes Linear methodology, which only involves

expectations, variances and covariances.
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• It is vital to include both the observed errors e and the model discrepancy ǫ
within the analysis.

• For example, not including ǫ assumes that the model is perfect.

• Various levels of effort can be put into assessing say E[e],E[ǫ],Var(e) and

Var(ǫ), for example, a common assessment is that E[e] = 0 and E[ǫ] = 0.

• In our first paper on Mukwano the modellers gave the simple assessment

that 3
√

Var(ǫ) corresponds to approximately 10% of model output.

• In subsequent work we performed far more detailed assessments of internal

and external discrepancy by considering model deficiencies and possible

model improvements. In prep, but for a list of simple assessment techniques

see:

Goldstein, M., Seheult, A., Vernon, I.: Assessing Model Adequacy. In: Wainwright, J.,

Mulligan, M. (eds.) Environmental Modelling: Finding Simplicity in Complexity, 2nd edn.

John Wiley & Sons, Ltd, Chichester, UK (2013)
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Emulation: 1D example

• Consider the graph of f(x): in general we do not have the analytic solution

of f(x), here given by the dashed line.

• Instead we only have a finite number of runs of the model, in this case five.
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Emulation: 1D example

• The emulator can be used to represent our beliefs about the behaviour of

the model at untested values of x, and is fast to evaluate.

• Gives the expected value of f(x) (blue line) along with a credible interval for

f(x) (red lines) representing the uncertainty about the model’s behaviour.
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Mukwano: Emulation

• For each of the 18 outputs we pick active variables xA then emulate

univariately (at first) using:

fi(x) =
∑

j

βij gij(x
A) + ui(x

A) + δi(x)

• The
∑

j βij gij(x
A) is a 3rd order polynomial in the active inputs.

• ui(x
A) is a Gaussian process.

• The nugget δi(x) models the effects of inactive variables as random noise.

• The ui(x
A) have covariance structure given by:

Cov(ui(x
A
1 ), ui(x

A
2 )) = σ2

i exp[−|xA1 − xA2 |
2/θ2i ]

• The Emulators give the expectation E[fi(x)] and variance Var[fi(x)] at

point x for each output given by i = 1, .., 20, and are fast to evaluate.
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• We perform an initial wave 1 set of n runs at input locations

x(1), x(2), . . . , x(n), using a Latin hypercube design, giving a column

vector of model output values

Di = (fi(x
(1)), fi(x

(2)), . . . , fi(x
(n)))T

• If we had provided prior distributions for each part of the emulator we could

use Bayes Theorem to update our beliefs π(fi(x)) about f(x):

π(fi(x)|Di) =
π(Di|fi(x))π(fi(x))

π(Di)

where π(fi(x)) and π(fi(x)|D) are the prior and posterior pdfs for fi(x).

• This follows the standard Bayesian statistics paradigm, however this

involves a detailed, full specification of the joint prior distribution: a complex

and difficult task, and is hard to calculate.
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• There is a better way: if we are instead prepared to specify just the

expectations, variances and covariances of the parts of the emulator, we

can use Bayes Linear methodology.

• This is an alternative version of Bayesian statistics that is easier to specify

and far easier to calculate with.

• Instead of Bayes Theorem we use the Bayes linear update:

EDi
(fi(x)) = E(fi(x)) + Cov(fi(x), Di)Var(Di)

−1(Di − E(Di))

VarDi
(fi(x)) = Var(fi(x))− Cov(fi(x), Di)Var(Di)

−1Cov(Di, fi(x))

where EDi
(fi(x)) and VarDi
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• There is a better way: if we are instead prepared to specify just the

expectations, variances and covariances of the parts of the emulator, we

can use Bayes Linear methodology.

• This is an alternative version of Bayesian statistics that is easier to specify

and far easier to calculate with.

• Instead of Bayes Theorem we use the Bayes linear update:

EDi
(fi(x)) = E(fi(x)) + Cov(fi(x), Di)Var(Di)

−1(Di − E(Di))

VarDi
(fi(x)) = Var(fi(x))− Cov(fi(x), Di)Var(Di)

−1Cov(Di, fi(x))

where EDi
(fi(x)) and VarDi

(fi(x)) are the Bayes Linear adjusted

expectation and variance for fi(x) at new input point x.

• For a step by step guide to emulation see the tutorial paper:

“Bayesian uncertainty analysis for complex systems biology models: emulation, global

parameter searches and evaluation of gene functions.”, Vernon, I, Goldstein, M, Rowe, J,

Liu, J and Lindsey, K, BMC Systems Biology, in submission, arXiv:1607.06358.
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• For a stochastic model, whereby K repeated runs of the model at the same

input location x gives different output realisations f (k)(x), there are

choices over what to emulate.

• A simple choice is to emulate the mean of f (k)(x) in detail, and treat the

variance of f (k)(x) as a constant, see:

Andrianakis, I., Vernon, I., McCreesh, N., McKinley, T.J., Oakley, J.E., Nsubuga, R.,

Goldstein, M., White, R.G.: Bayesian history matching of complex infectious disease models

using emulation: A tutorial and a case study on HIV in uganda. PLoS Comput Biol. 11(1),

1003968 (2015)

• Or we can emulate both the mean of f (k)(x) and the (log)-variance of

f (k)(x) in detail, see:

Andrianakis, I., Vernon, I., McCreesh, N., McKinley, T.J., Oakley, J.E., Nsubuga, R.,

Goldstein, M., White, R.G.: “History matching of complex stochastic computer models using

variance emulation, with application to an epidemiology model of HIV transmission. JRSSC,

to appear.

• We can (try to) emulate any feature of interest of the distribution of f(x).
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We can now calculate the Implausibility I(i)(x) at any input parameter point x
for each of the i = 1, .., 11 outputs. This is given by:

I2(i)(x) =
|EDi

(fi(x))− zi|
2

(VarDi
(fi(x)) + Var[ξi(x)] + Var[ǫi] + Var[ei])

• EDi
(fi(x)) and VarDi

(fi(x)) are the emulator expectation and variance.
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Implausibility Measures (Univariate)

• We can combine the univariate implausibilities across the 11 outputs by

maximizing over the current outputs:

IM (x) = max
i∈Q

I(i)(x)

• We can then impose a cutoff

IM (x) < cM

in order to discard regions of input parameter space x that we now deem to

be implausible.

• The choice of cutoff cM is often motivated by Pukelsheim’s 3-sigma rule,

which does not require precise distributions.

• We may simultaneously employ other choices of implausibility measure:

e.g. multivariate, second maximum etc.



Multivariate Implausibility Measure

• As we have constructed a multivariate model discrepancy, we can define a

multivariate Implausibility measure:

I2(x) = (E[f(x)]− z)TVar[f(x)− z]−1(E[f(x)]− z),

which becomes:

I2(x) = (E[f(x)]− z)T (Var[f(x)] + Var[ǫ] + Var[e])−1(E[f(x)]− z)

• where Var[f(x)], Var[ǫ] and Var[e] are now the multivariate emulator

variance, multivariate model discrepancy and multivariate observational

errors respectively (all 18×18 matrices).

• We now have two implausibility measures IM (x) and I(x) that we can use

to reduce the input space.

• We impose suitable cutoffs on each measure to define a smaller set of

non-implausible inputs.



Iterative Input Space Reduction: 1D example

• Comparing the emulator to the observed measurement we again identify

the set of x values currently consistent with this data (the observed errors

here have been reduced for clarity).

• Note: uncertainty on x now includes uncertainty coming from the emulator.
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• Minimised Implausibility Projections: at each 2D grid point, minimise the

implausibility IM (x) over a large 20D hypercube.

• If a point on these plots is implausible (coloured red), then it will be

implausible for any choice of the 15 other inputs.

• If a point is green, it may or may not prove to be an acceptable input.
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2D Optical Depth Plots: Wave 2

• Optical Depth Plots: at each 2D grid point plot the proportion of a large 20D

latin hypercube set of points that survive the cutoff IM (x) < cM .

• These plots show the ‘depth’ of the non-implausible volume Xj for wave j,

at each grid point.

• Shows where the majority of non-implausible points can be found, but not

necessarily where the best matches are.
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Iterative Input Space Reduction: 1D example

• We perform a 2nd iteration or wave of runs to improve emulator accuracy.

• The runs are located only at non-implausible (green/yellow) points.

• Now the emulator is more accurate than the observations, and we can

identify the set of all x values of interest.



Iterative Input Space Reduction: Mukwano Model Wave 1



Iterative Input Space Reduction: Mukwano Model Wave 4



Iterative Input Space Reduction: Mukwano Model Wave 7



Iterative Input Space Reduction: Mukwano Model Wave 9



Iterative History Matching for Reducing Input Space.

We use an iterative strategy to reduce the input parameter space. Denoting the

current non-implausible volume by Xj , at each stage or wave we:



Iterative History Matching for Reducing Input Space.

We use an iterative strategy to reduce the input parameter space. Denoting the

current non-implausible volume by Xj , at each stage or wave we:

1. Design and perform a set of runs over the non-implausible input region Xj



Iterative History Matching for Reducing Input Space.

We use an iterative strategy to reduce the input parameter space. Denoting the

current non-implausible volume by Xj , at each stage or wave we:

1. Design and perform a set of runs over the non-implausible input region Xj

2. Identify the set Qj+1 of informative outputs that we can emulate easily



Iterative History Matching for Reducing Input Space.

We use an iterative strategy to reduce the input parameter space. Denoting the

current non-implausible volume by Xj , at each stage or wave we:

1. Design and perform a set of runs over the non-implausible input region Xj

2. Identify the set Qj+1 of informative outputs that we can emulate easily

3. Construct new emulators for fi(x), where i ∈ Qj+1 defined only over Xj



Iterative History Matching for Reducing Input Space.

We use an iterative strategy to reduce the input parameter space. Denoting the

current non-implausible volume by Xj , at each stage or wave we:

1. Design and perform a set of runs over the non-implausible input region Xj

2. Identify the set Qj+1 of informative outputs that we can emulate easily

3. Construct new emulators for fi(x), where i ∈ Qj+1 defined only over Xj

4. Evaluate the new implausibility functions Ii(x), i ∈ Qj+1 only over Xj



Iterative History Matching for Reducing Input Space.

We use an iterative strategy to reduce the input parameter space. Denoting the

current non-implausible volume by Xj , at each stage or wave we:

1. Design and perform a set of runs over the non-implausible input region Xj

2. Identify the set Qj+1 of informative outputs that we can emulate easily

3. Construct new emulators for fi(x), where i ∈ Qj+1 defined only over Xj

4. Evaluate the new implausibility functions Ii(x), i ∈ Qj+1 only over Xj

5. Define a new (reduced) non-implausible region Xj+1, by IM (x) < cM ,

which should satisfy X ⊂ Xj+1 ⊂ Xj



Iterative History Matching for Reducing Input Space.

We use an iterative strategy to reduce the input parameter space. Denoting the

current non-implausible volume by Xj , at each stage or wave we:

1. Design and perform a set of runs over the non-implausible input region Xj

2. Identify the set Qj+1 of informative outputs that we can emulate easily

3. Construct new emulators for fi(x), where i ∈ Qj+1 defined only over Xj

4. Evaluate the new implausibility functions Ii(x), i ∈ Qj+1 only over Xj

5. Define a new (reduced) non-implausible region Xj+1, by IM (x) < cM ,

which should satisfy X ⊂ Xj+1 ⊂ Xj

6. Unless (a) the emulator variances are now small in comparison to the other

sources of uncertainty (model discrepancy and observation errors) or (b)

computational resources are exhausted or (c) all the input space is deemed

implausible, return to step 1



Iterative History Matching for Reducing Input Space.

We use an iterative strategy to reduce the input parameter space. Denoting the

current non-implausible volume by Xj , at each stage or wave we:

1. Design and perform a set of runs over the non-implausible input region Xj

2. Identify the set Qj+1 of informative outputs that we can emulate easily

3. Construct new emulators for fi(x), where i ∈ Qj+1 defined only over Xj

4. Evaluate the new implausibility functions Ii(x), i ∈ Qj+1 only over Xj

5. Define a new (reduced) non-implausible region Xj+1, by IM (x) < cM ,

which should satisfy X ⊂ Xj+1 ⊂ Xj

6. Unless (a) the emulator variances are now small in comparison to the other

sources of uncertainty (model discrepancy and observation errors) or (b)

computational resources are exhausted or (c) all the input space is deemed

implausible, return to step 1

7. If 6(a) true, generate a large number of acceptable runs from the final

non-implausible volume X , with appropriate sampling.
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Why Does Iterative Refocussing Work?

Why do we reduce space in waves? Why not attempt to do it all at once?

Because this requires an accurate emulator valid over whole input space.

• In contrast, the iterative approach is far more efficient, as at each wave the

emulators are found to be significantly more accurate. This is expected as:

1. We have ‘zoomed in’ on a smaller part of the function f(x), it will be

smoother and most likely easier to fit with low order polynomials.

2. We have a much higher density of runs in the new volume, and hence

the Gaussian process part of the emulator will do more work.

3. We can identify more active variables, leading to more detailed

polynomial and Gaussian process parts of the emulator, as previously

dominant variables are now somewhat suppressed.

4. We can hence add more outputs to the set of informative and easy to

emulate outputs Qk.

5. In the stochastic case we can increase the repetitions.

• This is a major strength of the History Matching approach.



Mukwano Output: Male HIV Prevalence



Mukwano Output: Male HIV Prevalence (1 Run)



Mukwano Output: Male HIV Prevalence (2 Runs)



Mukwano Output: Male HIV Prevalence (3 Runs)



Mukwano Output: Male HIV Prevalence (10 Runs)



Mukwano Output: Male HIV Prevalence



Mukwano Output: Male HIV Prevalence

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Year

M
a

le
 H

IV
 p

re
v
a

le
n

c
e

 

 

Wave 1

Wave 4
Wave 6

Wave 8

Final non-implausible volume: 1.3× 10−11 of the original.



Mukwano: Sensitivity Analysis re Uncertainties

• Final non-implausible volume: 1.3× 10−11 of the original.



Mukwano: Sensitivity Analysis re Uncertainties

• Final non-implausible volume: 1.3× 10−11 of the original.

• We can perform a sensitivity analysis on the volume of the non-implausible

region, by decreasing the size of each of the four main uncertainty

contributions.



Mukwano: Sensitivity Analysis re Uncertainties

• Final non-implausible volume: 1.3× 10−11 of the original.

• We can perform a sensitivity analysis on the volume of the non-implausible

region, by decreasing the size of each of the four main uncertainty

contributions.

Decrease Observation Emulator Model Stochastic

Error Uncertainty Discrepancy Variability

50% 19.8 11.8 10.7 54.8

90% 45.4 24.9 21.9 91.4
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Mukwano 2.0

• Our epidemiologists came up with a larger version of Mukwano (96 inputs,

50 outputs)

• Simulates HIV transmission under various ART treatment strategies.

• Predicts the effects of ART on mortality and transmission over the next

15-20 years.

• A simplified version of history matching was applied.

• History matching was carried out using emulators based on linear

regression.

• See:

Andrianakis, I., McCreesh, N., Vernon, I, McKinley, T. J. Oakley, J. E. Nsubuga, R. Goldstein,

M. & White, R. G. (2016). History matching of a high dimensional individual based HIV

transmission model. Journal on Uncertainty Quantification (to appear).
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Optical Depth Plots

Final non-implausible volume: 2.4× 10−45 of the original.



Minimised Implausibility and Depth Plots

CD4 < 200 transmission [58]
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Mukwano 2.0

• History matching provided hundreds of input points that match all the

outputs simultaneously.

• These inputs are used to run the simulator into the future and predict the

effect of different ART interventions to mortality, HIV prevalence etc.

• It allows incorporating in the predictions the uncertainty about the values of

the input parameters, model discrepancy, observations etc.

• The results feed into a number of other research projects that quantify the

effect of different ART deployment strategies, costs, etc.

• We can hence use the above approach to make decisions about the most

effective intervention, but also to design the most efficient data collection

campaign.
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Designing new experiment: 1D example

• The predictions imply that any measurement of Y (t = 2) is highly unlikely

to be informative for x.

• This is due to the measurement errors swamping the signal from the model

output Y (t = 2).
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Designing new experiment: 1D example

• The predictions for Y (t = 5) show a different conclusion.

• For each possible measurement of Y (t = 5) it is highly likely that we will

be able to rule out several more values of x as implausible.
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Designing new experiment: 1D example

• For one possible measurement, see that non-implausible values of x would

lie between 0.344 and 0.354, ruling out 70% of the possible values of x.

• This high expected space reduction in x implies that Experiment B,

measuring f(x, t) at t = 5, is clearly the best choice.
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Final Concluding Comments

• We have a broad methodology for performing full uncertainty analyses on

such complex models of disease.

• The correct treatment of uncertainty is vital: without this, any analysis will

be problematic and untrustworthy.

• The emulation methods we describe can be used to exhaustively explore

model features (helpful when developing models).

• Due to the need to synthesis many sources of uncertainty within one

coherent calculation, a Bayesian approach is ideal.
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