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Pixel Surfaces

It is now common to construct spatial surfaces of demographic and health
indicators at the “pixel” level:

• Population (Wardrop et al., 2018).
• Malaria (Gething et al., 2016).
• U5MR (Golding et al., 2017).
• Vaccination (Utazi et al., 2018)
• HIV testing in women; stunting in children; anemia in children; household

access to improved sanitation (Gething et al., 2015).
• Child growth failure (Osgood-Zimmerman et al., 2018).
• Educational attainment (Graetz et al., 2018).
• . . .

These maps are based, in large part, on data from surveys, often DHS which
typically use stratified cluster sampling with the strata usually corresponding
to region crossed with urban/rural and households sampled within
enumeration areas which are sampled within strata.



Disease mapping → SAE

In spatial epidemiology there is a long history of mapping disease rates/risk
(particularly cancer) at the areal level:

• Data are based on complete enumeration of cases (and population).
• Smoothing via discrete spatial models is the norm (e.g., Besag et al.,

1991; Leroux, 2000); alleviates problems with small numbers of cases
for a rare disease.

• Hypothetical risk is usually of primary interest, rather than the true
fraction of population that are cases.



Disease mapping → SAE

In traditional SAE the aim is to estimate true counts or population averages
(e.g., fraction with disease) over a group of domains (areas).

Data arise from surveys, often with a complex design.

Areas historically correspond to administrative regions (in which people live)
rather than pixel regions (in many of which, nobody lives).

Traditional SAE (Rao and Molina, 2015) does not emphasize spatial
smoothing, so no accepted approach as yet (at least not amongst the
statistical community...).



Design-Based Inference
Suppose θi is the target of inference in area i (e.g., Admin-1 regions).

Direct Estimation:
• Weighted estimator θ̂i with asymptotic distribution N(θi , V̂i), where V̂i is

the variance, which acknowledges the design.
• Design is accounted for in estimation by weighting, and in variance

calculation.
• Population information is implicit in the weighting, and is not needed for

construction of estimate or variance. For simple random sampling:

θ̂i =

∑ni
k=1 wik yik∑ni

k=1 wik
,

with wik = Ni/ni where Ni is the population and ni is the sample size in
area i .

• With small samples in an area, instability in estimates/low precision.

Smoothed Direct Estimation (Mercer et al., 2015):
• Smooth direct estimator using disease mapping discrete spatial models.
• Alleviates small sample size problems.



Scaling Up the Smoothed Direct Model (Li et al., 2018)

The smoothed direct model has been used for 35 African countries to
estimate U5MR in Admin-1 regions by year.

Includes space-time interactions that cross random walk models in time with
ICAR models in space (Knorr-Held, 2000).

Data:
• 121 DHS in 35 countries
• 1.2 million children
• 192 million child-months

UN have supported this research and these estimates.

Takes around 2.5 hours to obtain estimates for all countries – separate
models for each country.

Spatial and space-time smoothed direct estimates models are available in R,
via the SUMMER package.



Figure 1: Predictions of U5MR for 2015, in 35 countries of Africa.
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Figure 2: Posterior median estimates for Kenya districts.



Model-Based Inference

For simplicity consider a binary outcome and let Yik be the number of
individuals out of nik with the characteristic of interest in cluster k of area i .

It has become the norm to ignore stratification and assume the geostatistics
model:

Yik |θik ∼ Binomial(nik , θik )

log

(
θik

1− θik

)
= β0 + βxik + εik + S CONT

ik

where
• θik = θ(sik ) is the risk at location sik ,
• xik are covariates,
• εik ∼ N(0, σ2

ε) is the nugget,
• S CONT

ik are spatial random effects, assumed to arise from a Gaussian
process.

Gething and Burgert-Brucker (2017) reported mixed accuracy for different
outcomes using this model (poor for vaccination surfaces, for example).



Model-Based Inference

Alternatively a discrete spatial model can be used:

log

(
θik

1− θik

)
= α+ βxik + εik + S DISC

i

where
• S DISC

i are discrete spatial random effects that follow an ICAR (Markov
Random Field) model (Besag et al., 1991).

For either model, area estimates are obtained by averaging point estimates
with respect to the population from:

θi =

∫
s θ(s)d(s) ds∫

s d(s) ds

where d(s) is population density at location s.

In practice, the continuous spatial model is always approximated by some
form of discretization, so the integral is approximated by summing over a grid.
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Figure 3: Mesh on which SPDE calculations are carried out (top left), zoomed in grid on
which predictions are performed (right).



Figure 4: Kenya U5MR estimates in 2000 using discrete spatial model (left), and
continuous spatial model (right).

Point estimates are very similar, but more uncertainty associated with the
discrete spatial model estimates.
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Figure 5: Top row: Kenya and Malawi within-country variability in U5MR (5% and 95%
quantiles of pixel distribution). Bottom row: percentage drop from 1990–2015 (left),
posterior probability of attaining MDG goal (right).



Comparison of Discrete and Continuous Spatial Models

MSE comparison based on 400 (out of 1600) clusters from 2014 Kenya DHS.

Let:
• Y (1)

ip denote the weighted estimator.

• Y (2)
ip the smoothed estimator from continuous space model.

• Y (3)
ip the smoothed estimator from discrete space model: ICAR × AR(1),

with the latter having yearly resolution,

in county i and period p.

We compare these estimates with the weighted estimates from
(approximately) 1200 (left-out) clusters from 2014, yip (the “truth”).

In particular, we calculate,

MSE(j)
p =

1
47

47∑
i=1

(
Y (j)

ip − yip

)2
, (1)

for p = {1990–1994,1995–1999, 2000–2004, 2005–2009, 2010–2014 } and
j = 1, 2, 3.



MSE Comparison

Period Weighted Continuous Space Discrete Space
1990–1994 49 29 29
1995–1999 46 21 21
2000–2004 40 22 22
2005–2009 41 20 20
2009–2014 37 15 15

Table 1: Mean-squared errors (×102) comparing weighted and spatially and temporally
smoothed estimates.

Conclusions:
• Spatial models have very similar predictive ability, with the continuous

model being slightly more accurate.
• Both show a dramatic improvement over the weighted estimates.



Statistical Issues with Complex Sampling

Ignoring the design leads to the possibility of:
• Bias (if stratification variables are associated with the outcome).
• An inappropriate measure of variance (cluster sampling breaks

independence of outcomes).

We report on a limited simulation exercise that investigates the impact of
ignoring the design.

As a simple example, suppose the strata are urban/rural.

If we ignore this aspect then
• area-level estimates will be biased unless:

• the outcome does not depend on strata membership, or
• sampling of strata is in the same proportion as the population frequencies

(so not stratified!).
• pixel-level estimates will be biased unless:

• the outcome does not depend on strata membership.

Note: If population density and/or travel time are in the covariate model, may
get partial correction.



Accounting for Complex Sampling

We consider the simplified situation in which we have:
• A single survey.
• A binary outcome.

Using Kenya geography, we simulate a single complete population:
• Clusters: 96,251 enumeration areas (EAs), 32% are urban.
• Strata used in DHS in 2014 are 47 counties and urban/rural (92 in total,

Nairobi and Mombasa are entirely urban).
• From the Kenya 2014 DHS report we know the numbers of urban/rural

EAs by district and we match these numbers by thresholding on a
population density surface.

• Within each EA, assume 25 households, with one mother in each
household and one birth per mother.
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Figure 6: Sampling frame for Kenya simulation.



Accounting for Complex Sampling

We have nj = 25 births at each EA (cluster) location sj , j = 1, . . . , n, and we
generate neonatal deaths Yj according to

Yj |θ(sj) ∼ Binomial (nj , θ(sj))

log

(
θ(sj)

1− θ(sj)

)
= β0 + γI(sj ∈ urban ) + εj + S(sj),

where
• εj ∼iid N(0, τ 2) (the nugget),
• S(s) is a Gaussian Process (GP) with Matérn covariance function and

(effective) range φ and variance σ2.

The nugget term induces within-cluster dependence.



Accounting for Complex Sampling

Assume inference is at the county level.

Methods to be compared:
• Naive: Assume binomial (unweighted) counts in each county. This gives

an estimate θBIN
i and a variance from which an asymptotic CI can be

calculated.
• Direct estimates: This gives an estimate θDIR

i and a variance from which
an asymptotic CI can be calculated.



Accounting for Complex Sampling

• Smoothed Direct: Take logit of direct estimates θDIR
i with appropriate

design-based estimator and model as Mercer et al. (2015),

logit(θDIR
i ) ∼ N(ηi , V̂DES,i)

ηi = β0 + εi︸︷︷︸
Independent

+ Si︸︷︷︸
ICAR

County smoothed direct estimate

θ̂SDIR
i = expit(β̂0 + ε̂i + Ŝi).



Accounting for Complex Sampling

• Smoothed Adjusted Discrete Spatial Model at the cluster level:

Yj |θj ∼ Binomial(nj , θj)

logit(θj) = β0 + γI(sj ∈ urban ) + εi[j]︸︷︷︸
Independent

+ Si︸︷︷︸
ICAR

+ δj︸︷︷︸
Independent

.

Obtain 2 estimates for each county i:

θ̂i1 = expit(β̂0 + ε̂i + Ŝi)

θ̂i2 = expit(β̂0 + γ̂ + ε̂i + Ŝi)

Then
θ̂i = qi θ̂i1 + (1− qi)θ̂i2

where qi is the proportion of the births that occur in rural clusters.
• Smoothed Adjusted Continuous Spatial Model at the cluster level:

Yj |θj ∼ Binomial(nj , θj)

logit(θj) = β0 + γI(sj ∈ urban ) + εj︸︷︷︸
Independent

+ Sj︸︷︷︸
GP



Accounting for Complex Sampling

Methods comparison: bias, MSE, Average of Variance, 80% CI coverage.

Parameters (in all simulations):
• β0 = −2, γ = −0.5 (so urban lower)
• σ2 = 0.152, effective range φ = 300 km, τ 2 = 0.12.

Two simulations:

1. Unstratified sampling.

2. Stratified sampling in which we oversample urban clusters. Specifically,
in each county sample twice as many urban as rural clusters.



Results1

• Unstratified sampling:

Method Bias MSE Ave. Var. 80% coverage

Naive -0.020 0.060 0.051 0.78
Direct estimates -0.020 0.060 0.053 0.75
Smoothed Direct 0.012 0.018 0.018 0.78
Discrete Spatial -0.014 0.011 0.015 0.84
Continuous Spatial -0.005 0.012 0.010 0.72

• Stratified sampling:

Method Bias MSE Ave. Var. 80% coverage

Naive -0.082 0.069 0.053 0.75
Direct estimates -0.029 0.066 0.058 0.73
Smoothed Direct 0.005 0.021 0.020 0.78
Discrete Spatial -0.015 0.011 0.016 0.86
Continuous Spatial -0.005 0.012 0.010 0.72

To be continued...

1Bias is logit θ̂i − logit θi where θi is truth



Model Validation

No consensus on how to validate model, cross-validation is the most
common approach, but details on how splits were made often sketchy, as are
exact ways in which predictions obtained (supplementary materials hide
many sins...).

When bias is reported, what is the “truth”?

By construction, spatial models smooth the covariate mean in areas with no
data.

Wakefield et al. (2018) compared predictions for U5MR in Kenya from
discrete and continuous spatial models:

• “Truth” (direct estimates with small variance) is only available at
Admin-1, 5-year scale.

• Discrete and continuous models performed equally well, but below
Admin-1, who knows?

Now investigating the use of proper scoring rules (Gneiting and Raftery,
2007).



Model Validation

When interpreting surfaces based on DHS data, should also bear in mind:
• Jittering (Gething et al., 2015).
• Boundary changes.
• Migration.
• Recall bias.
• Non-response.
• Linear systematic sampling (explicit stratification).
• Every country has its own idiosyncrasies.



Covariate Modeling

Distinguish between:
• Individual-level modeling, for example, for U5MR, Balk et al. (2004).
• Surface modeling, in which we require covariates to be available at all

prediction points.

Some approaches:
• Often some kind of backward elimination (e.g., Utazi et al., 2018) or all

subsets (e.g., Gething et al., 2015).
• Stacked generalization/super learner (Bhatt et al., 2017; Golding et al.,

2017).

In general, inference/uncertainty estimates do not correctly account for the
selection of the final covariate model.



Discussion: Comparison of Models

Direct Smoothed Discrete Continuous
Estimation Direct Spatial Spatial

Robustness XXXX XXX XX X
Transparency XXXX XXX XX X
Sparse Data X XX XXXX XXXX
Spatial Scale X X XXXX XXXX
Data Required XXXX XXXX XXX XX
Flexibility X XX XXX XXXX

Table 2: Comparison of approaches to SAE.

General strategy: See if estimates from different models are consistent with
each other.

There is some skepticism of even national estimates (e.g., Boerma et al.,
2018), let alone SAE or pixel level estimation.



Discussion

Substantive:
• Follow-up to Admin-1 in sub-Saharan Africa paper: Admin-2 including

summary birth history data.
• Asia at Admin-1.
• Examination of biases in DHS data.
• Measles: modeling vaccination coverage and spatio-temporal disease

count data.

Methodological:
• Consensus on pixel modeling.
• Modeling summary birth history.
• Examination of implications of ignoring the design.
• Points/polygons problem.
• Examination of model validation techniques.
• Covariate modeling (how to use information on conflicts?).
• Spatial APC models with survey data.
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