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Overview

Motivate discrete-time stochastic models for analysis of infectious disease
surveillance data:

• Review of models.

• Shortcomings of current models.

Typical available information in a surveillance setting:

• Demographic information on each case, for example, age and gender.

• Symptom onset date.

• Date of diagnosis.

• Clinical information, for example, symptoms.

• Laboratory information on virology, perhaps on a subset of cases.

• Areal (ecological) geographical information.

• Population information at the areal level.
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Motivating example: Hand, Foot and Mouth Disease (HFMD)

• HFMD caused by an acute contagious viral infection.

• Transmitted primarily via the fecal-oral route.

• Large-scale outbreaks in Asia during the past 20 years.

• Majority of cases are in children.

• Cases are most infectious during the first week of acute illness but may
continue to shed virus in the stool for weeks.

• Incubation period is 3–5 days.

Each reported case of HFMD from the Chinese Center for Disease Control and
Prevention (CCDC) infectious disease surveillance system consists of the
patient’s geographical location, gender and age and the symptom onset date.

For illustration, I present data from 59 prefectures in the Central North region
of China over the period 2009–2011.
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Weekly epidemic curves of HFMD cases by age group
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Categories of infectious disease transmission models

Deterministic Models based on Differential Equations:

• Computation is efficient so system can be complex.

• Fit to data using ordinary least squares or variants, inference dicey.

• Interpretable parameters.

• Poor for small populations or when the disease is rare.

Discrete-Time Stochastic Models:

• Fitting via likelihood/Bayes is relatively straightforward.

• Interpretable parameters depends on the exact form.

• Computational efficiency not greatly affected by population size.

• Rigid data form (equally-spaced) typically required.

Continuous-Time Stochastic Models:

• Interpretable parameters.

• Computation not yet feasible in large populations.
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Cartoon representation of SIR model

Let x(t), y(t), z(t) be the number of susceptibles, infectives, recovered at time
t in a closed population.

x(t)

S

y(t)

I

z(t)
βx(t) y(t) γy(t)

R

Figure 1 : Solid arrows show the movement from S to I to R.
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Deterministic SIR model

Classic mass-action:

dx(t)

dt
= −βx(t)y(t)

dy(t)

dt
= βx(t)y(t)− γY (t)

dz(t)

dt
= γy(t),

with per-contact infection rate β and recovery rate γ.
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Continuous-time stochastic SIR model

Continuous-time Markov chain {X (t),Y (t), t ≥ 0} with transition probabilities
for a susceptible becoming infective and an infective becoming recovered being:

Pr

( [
X (t + h)
Y (t + h)

]
=

[
x − 1
y + 1

] ∣∣∣∣ [X (t)
Y (t)

]
=

[
x
y

] )
= βhxy + o(h)

Pr

( [
X (t + h)
Y (t + h)

]
=

[
x

y − 1

] ∣∣∣∣ [X (t)
Y (t)

]
=

[
x
y

] )
= βhxy + o(h)

where the remainder term o(h) is small.

The most appealing (at least to a statistician!) but quickly gets
computationally hideous as the populations increase in size given the usual
surveillance data, see the references in Fintzi et al. (2017).
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Discrete-time stochastic SIR model

Choose the time scale to equal the transmission dynamic scale (e.g., 2 weeks
for measles).

So we lose the recovery rate parameter.

Let Xt and Yt be random variables representing the number of susceptibles and
infectives at time t, t = 1, . . . ,T .

Infectives are modeled and susceptibles are reconstructed from

Xt = Xt−1 − Yt ,

assuming a closed population.
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Discrete-time stochastic SIR model

Held et al. (2005) proposed an epidemic-endemic (frequency dependent1)
model:

E[Yt |xt−1, yt−1] = xt−1(1− e−βyt−1/N)

≈ βxt−1
yt−1

N
≈ βyt−1,

if we approximate the number of susceptibles by total population.

Bjørnstad et al. (2002) describe a Time-series SIR (TSIR) (density dependent2)
model:

E[Yt |xt−1, yt−1] = βxt−1(yt−1 + δt−1)α

where δt−1 are immigrant infections and α allows flexibility in the transmission
model.

Both use negative binomial data sampling models.

1More on this later
2Ditto
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Discrete-time stochastic SIR model extensions

From this point on we concentrate on discrete-time stochastic models.

The above models have been extended in various directions:

• Add a spatial component.

• Age-gender stratum.

• Contact structure.

• Covariate models: Ecological fallacy/change of support/modifiable areal
unit issues?



Motivation Stochastic Models Ecological Bias Discussion References Extra Material

A spatial discrete-time stochastic model

Let Yit be the count of HFMD cases in area i and in week t, i = 1, . . . , n,
T = 1, . . . ,T (assume no under-reporting or other sources of error).

Data model:
Yit |µit ∼ NegativeBinomial(µit , ψ),

where µit = E[Yit |yi,t−1] is the conditional mean:

µit = λAR
it︸︷︷︸

Self Area

yi,t−1 + λNEi︸︷︷︸
Neighboring

Area

n∑
i′=1

wi′ i︸︷︷︸
Proximity

Matrix

yi′,t−1 + λEN
it︸︷︷︸

Environmental

.

This model is interesting but is there an infectious disease process formulation
lurking behind the scenes, or it it just a flexible curve fitting exercise?
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Figure 2 : Fitted and observed numbers of HFMD cases, with contributions by
different components highlighted, for two provinces in the China central north region.
The counts are summed over strata.
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Derivation of the discrete-time stochastic model
For the moment, for simplicity, ignore space.

Model the probability that a susceptible individual at time t − 1 will become
infected by time t.

For the moment, assume infected individuals are infectious for one time unit,
before becoming removed, so that we have an SIR model with a fixed infectious
period duration.

Given yt−1 infectives,

λ†t︸︷︷︸
Hazard

= c(N)︸ ︷︷ ︸
Contact Rate

× yt−1

N︸ ︷︷ ︸
Prevalence

× p︸︷︷︸
Infection Prob

Contact rate can be

C(N) =

{
cFD Frequency Dependent
NcDD Density Dependent

We assume frequency dependent to give hazard rate (force of infection):

λ†t = λyt−1/N.
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Derivation of the discrete-time stochastic model

Probability of infection in [t − 1, t), give no infection at t − 1 is

1− exp(−λyt−1/N).

Leads to (under the usual assumptions):

Yt |Yt−1 = yt−1 ∼ Binomial[xt−1, 1− exp(−λyt−1/N)].

If rare disease, and assume xt−1 ≈ N:

Yt |Yt−1 = yt−1 ∼ Poisson(λyt−1).

This forms the basis of the Held et al. (2005) formulation.
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A discrete-time stochastic model with age-gender strata and space

In the case of different possibilities for becoming infected, we can use the
classic competing risks framework of Prentice et al. (1978), in which the hazard
rates (forces of infection) are additive.

We let λTOT
itj represent the overall hazard for a stratum j susceptible in area i at

time t, and write

λ†,TOT

itj = λ†,AR

itj︸︷︷︸
Self-Area

+ λ†,NE

itj︸︷︷︸
Neighboring-Area

+ λ†,EN

itj︸︷︷︸
Environmental

.

Assuming λTOT
itj is small, the probability of infection in [t − 1, t), for a single

susceptible is,
1− exp(−λTOT

itj ) ≈ 1− [1− λTOT
itj ] = λTOT

itj .
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A discrete-time model with age-gender strata and space

Leads to conditional mean:

µitj =

 J∑
j′=1

λAR
itjj′yi,t−1,j′


︸ ︷︷ ︸

Self-Area
Different Strata

+

 n∑
i′=1

J∑
j′=1

λNE
itjj′wi′ iyi′,t−1,j′


︸ ︷︷ ︸

Different Neighbors
Different Strata

+ λEN
itj︸︷︷︸

Environmental

.

• We’ve allowed the rates to depend on space, time (to allow covariate
modeling) and strata.

• In practice sparsity of information will lead to simplifications.

• Common to include area random effects (see later), which may or may not
have spatial structure.



Motivation Stochastic Models Ecological Bias Discussion References Extra Material

F,0-0.9

F,1-5.9

F,>6

M,0-0.9

M,1-5.9

M,>6

F,0-0.9 F,1-5.9 F,>6 M,0-0.9 M,1-5.9 M,>6
Infective

S
us
ce
pt
ib
le

0.05
0.10
0.15
0.20

value

Figure 3 : Estimated transmission rates between age-gender strata for China central
north weekly HFMD surveillance data, from Bauer and Wakefield (2017).
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Modeling the neighborhood weights

Originally, weights were binary corresponding to spatial contiguity.

More recently (Meyer and Held, 2014), the weights are assumed to follow a
power law,

wi′ i =
m−ρi′ i∑n
k=1 m−ρki

,

where mi′ i is the number of areas that must be crossed when moving between
areas i and i ′, and ρ is a power that may be estimated.

The limit ρ→∞ corresponds to first-order dependency, and ρ = 0 gives equal
weight to all areas.

The normalization ensures that
∑n

k=1 wki = 1 for all rows of the weight matrix
(infecteds are being allocated to neighbors).

The power law allows “contact” between areas that are a large distance apart
since it is “heavy-tailed”.
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Neighborhood model in the TSIR formulation

Others (Xia et al., 2004) have used a gravity model within the TSIR framework:

E[Yit |yi,t−1] = βxi,t−1(yi,t−1 + δi,t−1)α

δit︸︷︷︸
Infections from

other areas

∼ Gamma(mit , 1)

E[δi,t−1] = mit

= θNτ1
i

n∑
i′=1

yτ2
i′,t−1

dρi′ i

So with α = τ1 = τ2 = 1 and xi,t−1 ≈ Ni , we can write

µit = Niλ
AR
t yi,t−1 + λNENi

n∑
i′=1

yi′,t−1

dρi′ i

where λAR = βt , λ
NE = θ and we have a distance-based weighting scheme.
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Effects of aggregation (Fisher and Wakefield, 2017)

The key to understanding ecological bias is to take an individual-level model
and aggregate to the area-level (Wakefield, 2008).

Let Yitk be disease indicator for a susceptible individual k in area i and week t.

Assume simple self-area model and a rare disease

Yitk |λitj ∼ Bernoulli (λitkYi,t−1/Ni ) .
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Effects of aggregation

For a rare disease, covariates may be included via (say) the log-linear form

λitk = exp(α + βzitk).

The implied aggregate hazard rate for area i and time t is

λit = exp(α)

∫
Ai

exp(βz)git(z)dz ,

where Ai represents region i and git(z) is the within-area distribution of z .

Simple example: A binary covariate so zitk = 0/1.

Naive model: λit = exp(α? + β?z it), where z it is the area-time average.

Aggregate consistent model: λit = Ni

[
(1− z it)eα + z ite

α+β
]
.
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Vaccination coverage and the ecological model

Herzog et al. (2011) and Meyer et al. (2016) include estimated vaccination
coverage (zi ) in either the epidemic or environmental component of the Held
et al. (2005) model:

Yit |µit ∼ Poisson(µit).

For example, when coverage in included in the epidemic term:

µit = eα0 (1− zi )
α1 yi,t−1 + Nitνit

• (1− zi ) is a proxy for proportion of susceptibles in area i .

• α1 > 0 means higher proportion of susceptibles will boost the generation
of new infections.

• Doubling of proportion of susceptibles is associated with a multiplicative
change in the epidemic measles incidence of 2α1 .

No biological motivation or interpretation for α1: we emphasize we want an
interpretable model, not just a predictive model.
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Modes of vaccine action on susceptibility

Let φ be vaccine effect, and z be the proportion vaccinated, so initially number
of unvaccinated susceptibles is Su0 = (1− z)N.

All-or-none vaccine:

• If successful, vaccinated individual has 100% lifetime immunity.

• Vaccine fails with probability 1− φ.

• Vaccinated susceptible refers to those vaccine recipients for whom it failed,
initially Sv0 = (1− φ)zN.

• Risk of infection is same for vaccinated and unvaccinated susceptibles.

Leaky vaccine:

• Vaccinated individual’s risk of infection reduced by multiplicative factor of
1− φ, i.e. λ†vt = (1− φ)λ†ut .

• No one has 100% immunity, initially Sv0 = zN.
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All-or-none Leaky

Initial susceptible population
Su0(φ) = (1− z)N Su0 = (1− z)N

Sv0(φ) = (1− φ)zN Sv0 = zN

Force of infection

λ†ut = λ†t , λ†vt = λ†t λ†ut = λ†t , λ†vt = (1− φ)λ†t

Progression

Yu,t+1 |λ†ut Bin
(
Sut(φ), 1− e−λ

†
t

)
Bin

(
Sut , 1− e−λ

†
t

)
Yv,t+1 |λ†vt Bin

(
Svt(φ), 1− e−λ

†
t

)
Bin

(
Svt , 1− e−(1−φ)λ

†
t

)
Implied aggregate model

Yt+1|λ†t Bin
(
St(φ), 1− e−λ

†
t

)
Convolution of binomials

Simplifying assumptions

Poissons approximate binomials

Poi
(
St(φ)

(
1− e−λ

†
t
))

Poi
(
Sut

(
1− e−λ

†
t
)

+ Svt
(
1− e−(1−φ)λ

†
t
))

Taylor approximation

1− exp(−λ†t ) ≈ λ†t Poi
(
St(φ)λ†t

)
Poi

((
Sut + (1− φ)Svt

)
λ†t

)
Negligible number of infections

St(φ) ≈ (1− φz)N Sut ≈ (1− z)N, Svt ≈ zN

Ecologically-consistent vaccine model

Yt+1|λ†t , φ ∼ Poisson
(
λ†t (1− φz)N

)
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Measles in Germany: Toy illustration

Cases by week
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Ecological Measles Model

Include area-specific random effects and seasonal effects in the endemic
component.

Data Model: Yit are counts over a 2-week period:

Yit |µit ∼ Poisson(Ni (1− φzi )µit),

µit = λi
yi,t−1

Ni
+ νit ,

Prior Model:

log λi = αAR + ai ,

log νit = αEN + bi + γ sin(2πt/26) + δ cos(2πt/26),

ai ∼ N(0, σ2
AR),

bi ∼ N(0, σ2
EN),

φ ∼ Beta(10, 2.5),

Fit using Hamiltonian Monte Carlo implemented in Stan (Carpenter et al.,
2016).
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Fitted values for measles in Germany
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Component-specific random effect estimates

Self-area random effects âi

−0.84
−0.6
−0.39
−0.23
−0.03
0.2
0.31
0.42
0.55
0.75

Environmental random effects b̂i

−0.84
−0.6
−0.39
−0.23
−0.03
0.2
0.31
0.42
0.55
0.75
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Estimates for measles in Germany

Median 2.5% 97.5%
αAR 0.87 -0.30 1.65
φ 0.91 0.64 0.99

αEN 3.52 2.53 4.17
γ 0.71 0.55 0.86
δ -0.20 -0.36 -0.04

σAR 0.70 0.28 1.66
σEN 0.53 0.27 0.96
R0 2.38 0.74 5.22

Table 1 : Posterior medians and
95% credible intervals for the
measles biweekly data.

• φ̂ agrees with known MMR vaccine effect.

• R̂0 is much smaller than known R0.

• Vaccination coverage is estimated.

• Frequency versus density dependent.

• Other values seem to be reasonable.
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Discussion

So far, the Held et al. (2005) framework has not been extensively used to
address policy (e.g., vaccination strategies), rather used as for labeling areas as
high, or for prediction or covariate modeling (e.g., meteorological covariates are
common).

Herzog et al. (2011) examined measles vaccination levels, but as we have seen
the model used has limited interepretability.

Azman et al. (2012) investigated different vaccination campaigns for Cholera in
Haiti, using a discrete-time model similar to Held et al. (2005).

Van Boeckel et al. (2016) examine vaccination strategies for HFMD using a
TSIR model.
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Discussion

Still needs further development:

• Under-reporting; some work with the integer autoregressive (INAR) model
(Fernández-Fontelo et al., 2016).

• Non-constant infectious period (Wang et al., 2011).

• Fast implementations.

• Social contact data (Meyer and Held, 2017).

• Ecological aspect: fundamental problem is that we don’t observe exact
locations of cases.

• Combining disease and population data with other data sources, for
example, from satelites.

• More policy-driven analyses.



Motivation Stochastic Models Ecological Bias Discussion References Extra Material

References I

Azman, A., F. Luquero, A. Rodrigues, P. Palma, R. Grais, C. Banga,
B. Grenfell, and J. Lessler (2012). Urban cholera transmission hotspots and
their implications for reactive vaccination: evidence from Bissau City, Guinea
Bissau. PLoS Neglected Tropical Diseases 6, 1–11.

Bauer, C. and J. Wakefield (2017). Stratified space-time infectious disease
modeling: with an application to hand, foot and mouth disease in China.
Under revision.

Bjørnstad, O. N., B. F. Finkenstädt, and B. T. Grenfell (2002). Dynamics of
measles epidemics: estimating scaling of transmission rates using a time
series SIR model. Ecological Monographs 72(2), 169–184.

Carpenter, B., A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt,
M. Brubaker, J. Guo, P. Li, and A. Riddell (2016). Stan: A probabilistic
programming language. Journal of Statistical Software.

Fernández-Fontelo, A., A. Cabaña, P. Puig, and D. Moriña (2016).
Under-reported data analysis with INAR-hidden Markov chains. Statistics in
Medicine 35, 4875–4890.

Fintzi, J., X. Cui, J. Wakefield, and V. Minin (2017). Efficient data
augmentation for fitting stochastic epidemic models to prevalence data.
Journal of Computational and Graphical Statistics. To appear.



Motivation Stochastic Models Ecological Bias Discussion References Extra Material

References II

Fisher, L. and J. Wakefield (2017). Ecological. In preparation.
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Partially vaccinated populations

We simulate data under either all-or-none or leaky assumption and compare
following model fits:
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Compare results for fully observed all-or-none model, fully observed leaky
model, ecological vaccine model, and Herzog epidemic model.
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• Ecological vaccine model has similar estimates as the fully observed models

• Fully observed models have smaller intervals compared to the ecological
vaccine model (due to loss of information)

• Herzog is not estimating the same parameters
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