Modeling Under-Five Mortality with Summary Birth History Data

Katie Wilson

Department of Biostatistics University of Washington

April 18, 2018

Motivation

- Reducing the number of deaths in children under five remains a key public health issue
- One of the United Nations' Sustainable Development Goals is to reduce child mortality to 25 deaths per 1,000 live births by 2030
- Child mortality tends to be concentrated in developing regions where the information comes from surveys or census
- Birth records tend to be of 2 forms: FBH and SBH
- SBH data is easier and cheaper to collect, but does not directly provide temporal information on when births and deaths occurred

Woman	Child	DOB	DOD
1	1	1/10/1990	2/25/1993
1	2	4/19/1992	NA
2	1	11/1/1991	NA

Full birth history (FBH)

Woman	No. Children	No. Deaths
1	2	1
2	3	0
3	1	1

Summary birth history (SBH)

Motivating Example: Under-Five Mortality in the Nyanza Province

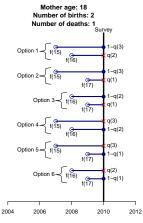
- Women ages 15–49
- FBH: DHS and MICS
 - pprox 8,000 women
- SBH: Census
 - \approx 129,000 women
- **Goal**: understand how under-five mortality varies in space and time

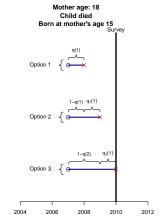
	# Women	# Births	# Deaths
Census 2009	128,791	382,826	52,530
DHS 2008-2009	1,318	3,870	648
MICS 2011	5,895	18,554	2,594
DHS 2014	1,165	3,639	447

Previous Approaches

- Brass Method (Brass, 1964; Coale and Trussell, 1977)
 - Requires for 5-year age groups of the mothers, the total number of women, number of children born, and number of children who died
 - Uses simulation results and model life tables to obtain estimates of under-five mortality back in time
 - Youngest women are being used to estimate current mortality rates
- **MAP** (Maternal Age Period-Derived; Rajaratnam et al., 2010): empirically estimate time distribution of births and deaths by mother's age using FBH to obtain a yearly measure of the ratio of deaths to births
- **BHI** (Birth History Imputation; Hill et al., 2015; Brady and Hill, 2017): SBH women are randomly matched to FBH women
- None of these use a full probability model and some require pooling from other countries/surveys in order to achieve large enough samples

Ideal data generating mechanism


- f(m): probability a woman gives birth at age m
- $q_a(1) = {}_1q_a$: probability a child dies between age a and a + 1 given survival to age a


Our Method

- General idea: reverse engineer the data generating process via data augmentation in a Bayesian framework
- In **step 1**, we define auxiliary variables for birth years and (if applicable) death years for the SBH data, thereby creating FBH from SBH
 - **Sub-step 1**: Enumerate all possible options and select one
 - **Sub-step 2**: For the children that died, determine the age they died
- In **step 2**, we condition on these birth and death years and update the fertility and mortality parameters

Our Method: Step 1

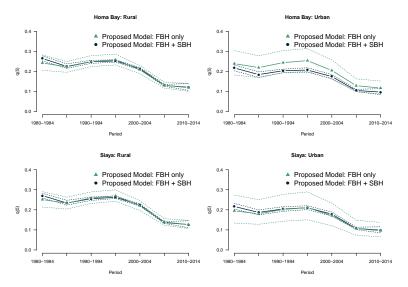
Sub-step 1: For each woman, enumerate all possible birth years and death indicators and select one **Sub-step 2**: For each death, enumerate all possible ages at death

Time

Our Method: Step 2

Conditional on this new FBH, we update **q** and **f**, where the likelihoods are

 $Z_a \mid q_a(1) \sim \text{Bernoulli}(q_a(1))$ $Y(m) \mid f(m) \sim \text{Bernoulli}(f(m))$


with

- Z_a: indicator for death between ages a and a + 1
- Y(m) : indicator for birth at age m

Under-Five Mortality in the Nyanza Province: Model

- Covariates:
 - Woman's age band (10–14, 15–19, ..., 45–49) \rightarrow fertility
 - Child's age \rightarrow mortality
 - County \rightarrow fertility and mortality
 - Strata (urban or rural) \rightarrow fertility and mortality
 - Time period (1970–1974, 1975–1979, ..., 2010-2014) \rightarrow fertility and mortality
 - Smooth over time
- Other considerations:
 - Clusters (enumeration areas) for DHS and MICS
 - HIV bias

Under-Five Mortality in the Nyanza Province: Results

Under-Five Mortality in the Nyanza Province: Results

Summary

- We propose a method for incorporating summary birth history data into analyses of under-five mortality trends
- Use a data augmentation approach to "create" full birth history data from summary birth history data
- Extensions to continuous time
- Spatial smoothing

Thank you!

References I

- Brady, E. and K. Hill (2017). Testing survey-based methods for rapid monitoring of child mortality, with implications for summary birth history data. *PloS one 12*(4), e0176366.
- Brass, W. (1964). *Uses of census or survey data for the estimation of vital rates*. United Nations. Paper prepared for the African Seminar on Vital Statistics, Addis Ababa, 14–19 December, 1964.
- Coale, A. J. and J. Trussell (1977). Annex i: estimating the time to which Brass estimates apply. *Population Bulletin of the United Nations* (10), 87–89.
- Hill, K., E. Brady, L. Zimmerman, L. Montana, R. Silva, and A. Amouzou (2015). Monitoring change in child mortality through household surveys. *PloS one 10*(11), e0137713.
- Rajaratnam, J. K., L. N. Tran, A. D. Lopez, and C. J. Murray (2010). Measuring under-five mortality: validation of new low-cost methods. *PLoS Medicine 7*(4), e1000253.

Our Method: Step 1

For notational simplicity, consider fertility $f(\cdot)$ and mortality $q(\cdot)$ constant over time.

Sub-step 1:

P(children born at (mother's) ages $\{m_{b_1}, \ldots, m_{b_B}\}$, children death indicators are $\{d_1, \ldots, d_B\}$

 $f, q, B \text{ births}, \sum_{i=1}^{B} d_i = D \text{ deaths, mother survey age } m_s \right)$ $\propto \left\{ \prod_{i=1}^{B} \underbrace{f(m_{b_i})}_{\text{prob of birth}} \left[\underbrace{q(m_s - m_{b_i})}_{\text{prob of death}} \right]^{d_i} \left[\underbrace{1 - q(m_s - m_{b_i})}_{\text{prob of survival}} \right]^{1 - d_i} \right\}$ $\times \prod_{m \notin \{m_{b_1}, \dots, m_{b_B}\}, m < m_s} \underbrace{(1 - f(m))}_{\text{prob of no birth}}$

$$P(\text{child } i \text{ dies at age } a \mid \boldsymbol{f}, \boldsymbol{q}, m_{b_i}, d_i, m_s) \propto \underbrace{q_{a-1}(1)}_{\text{dies at age } a \text{ given}} \left\{ \begin{array}{c} 1 - q(a-1) \\ 1 - q(a-1) \end{array} \right\}$$

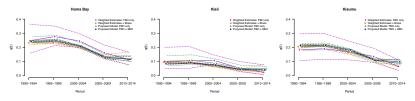
Other slides

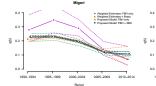
Under-Five Mortality in the Nyanza Province: Model

Fertility:

 $\begin{aligned} Y(m) \mid & f(m, \mathbf{x}) \sim \mathsf{Bernoulli}(f(m, \mathbf{x})) \\ \mathsf{logit}(f(m, \mathbf{x})) &= \phi_m(p) + \beta_m + \beta_r + \beta_s + \beta_{m,s} + \beta_{r,s} \end{aligned}$

 \$\phi_m(p)\$ is a woman's age group specific random walk of order 2


Mortality:

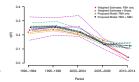

$$Z_a \mid {}_1q_a(\mathbf{x}) \sim \text{Bernoulli} \left({}_1q_a(\mathbf{x})\right)$$

logit $\left({}_1q_a(\mathbf{x})\right) = \log \text{BIAS}_{surv}(\mathbf{p}) + \beta(\mathbf{x}) + \nu_c$
 $\beta(\mathbf{x}) = \phi_a(\mathbf{p}) + \beta_a + \beta_r + \beta_s + \beta_{a,r} + \beta_{r,s}$

- BIAS_{surv}(p) an offset term to adjust for bias from HIV epidemics
- $\nu_{\rm C} \sim_{\it iid} {\it N}(0,\sigma^2)$
- $\phi_a(p)$ is a child's age group specific random walk of order 2

Other slides

Under-five Mortality in the Nyanza Province of Kenya



Period

Wainhood Entironeer: EBM cold

Weighted Estimates + Brass Proposed Model: FBH only

