Measuring inequity in family planning: Towards locally relevant monitoring by local actors

Leontine Alkema
University of Massachusetts, Amherst
Research funded by the Bill and Melinda Gates Foundation INV-008441

2023 Annual IDM Symposium - Frontiers in Modeling
Session on Exploring vulnerabilities and family planning
Monitoring family planning indicators using the Family Planning Estimation Model (FPET)
Monitoring family planning indicators using the Family Planning Estimation Model (FPET)

- Initial project:

 Model development:
 - Married and national
Monitoring family planning indicators
using the Family Planning Estimation Model (FPET)

• Initial project:
 • Estimate and project FP indicators for married women aged 15-49 in all countries in the world (Alkema et al., 2013).

Model development:
• Married and national
Monitoring family planning indicators using the Family Planning Estimation Model (FPET)

• Initial project:
 • Estimate and project FP indicators for married women aged 15-49 in all countries in the world (Alkema et al., 2013).
 • With the Track20 project (New et al. 2017; Sonneveldt et al., 2019):
 • Produce an online tool for in-country monitoring (FPET) and R package with use cases (Guranich et al., 2021)

Model development:
• Married and national
Monitoring family planning indicators using the Family Planning Estimation Model (FPET)

- Initial project:
 - Estimate and project FP indicators for married women aged 15-49 in all countries in the world (Alkema et al., 2013).
- With the Track20 project (New et al. 2017; Sonneveldt et al., 2019):
 - Produce an online tool for in-country monitoring (FPET) and R package with use cases (Guranich et al., 2021)

FPET = a tool for local monitoring

Model development:
- Married and national
Monitoring family planning indicators using the Family Planning Estimation Model (FPET)

- Initial project:
 - Estimate and project FP indicators for married women aged 15-49 in all countries in the world (Alkema et al., 2013).

- With the Track20 project (New et al. 2017; Sonneveldt et al., 2019):
 - Produce an online tool for in-country monitoring (FPET) and R package with use cases (Guranich et al., 2021)
 - Main usage group: in-country M&E officers

Model development:
- Married and national

FPET = a tool for local monitoring

![Graph showing trends](image)
Monitoring family planning indicators using the Family Planning Estimation Model (FPET)

- Initial project:
 - Estimate and project FP indicators for married women aged 15-49 in all countries in the world (Alkema *et al.*, 2013).
 - With the Track20 project (New *et al.* 2017; Sonneveldt *et al.*, 2019):
 - Produce an online tool for in-country monitoring (FPET) and R package with use cases (Guranich *et al.*, 2021)
 - Main usage group: in-country M&E officers
 - Include service statistics data

Model development:
- Married and national

FPET = a tool for local monitoring
Monitoring family planning indicators using the Family Planning Estimation Model (FPET)

- Initial project:
 - Estimate and project FP indicators for married women aged 15-49 in all countries in the world (Alkema et al., 2013).
- With the Track20 project (New et al. 2017; Sonneveldt et al., 2019):
 - Produce an online tool for in-country monitoring (FPET) and R package with use cases (Guranich et al., 2021)
 - Main usage group: in-country M&E officers
 - Include service statistics data
 - FPET evolved to better capture local contexts

Model development:
- Married and national

FPET = a tool for local monitoring
Monitoring family planning indicators using the Family Planning Estimation Model (FPET)

- Initial project:
 - Estimate and project FP indicators for married women aged 15-49 in all countries in the world (Alkema et al., 2013).
- With the Track20 project (New et al. 2017; Sonneveldt et al., 2019):
 - Produce an online tool for in-country monitoring (FPET) and R package with use cases (Guranich et al., 2021)
 - Main usage group: in-country M&E officers
 - Include service statistics data
 - FPET evolved to better capture local contexts
Monitoring family planning indicators using the Family Planning Estimation Model (FPET)

• Initial project:
 • Estimate and project FP indicators for married women aged 15-49 in all countries in the world (Alkema et al., 2013).

• With the Track20 project (New et al. 2017; Sonneveldt et al., 2019):
 • Produce an online tool for in-country monitoring (FPET) and R package with use cases (Guranich et al., 2021)
 • Main usage group: in-country M&E officers
 • Include service statistics data
 • FPET evolved to better capture local contexts

Model development:
• Married and national
• Further model updates
• Specific subgroups

FPET = a tool for local monitoring
Monitoring family planning indicators using the Family Planning Estimation Model (FPET)

• Initial project:
 • Estimate and project FP indicators for married women aged 15-49 in all countries in the world (Alkema et al., 2013).
• With the Track20 project (New et al. 2017; Sonneveldt et al., 2019):
 • Produce an online tool for in-country monitoring (FPET) and R package with use cases (Guranich et al., 2021)
 • Main usage group: in-country M&E officers
 • Include service statistics data
• FPET evolved to better capture local contexts
 • Model updates: Improved predictive performance and accounting for survey data quality issues (Cahill et al., 2018; Susmann et al., 2023), improved use of service statistics data (Cahill et al., 2022)
Monitoring family planning indicators using the Family Planning Estimation Model (FPET)

- Initial project:
 - Estimate and project FP indicators for married women aged 15-49 in all countries in the world (Alkema et al., 2013).

- With the Track20 project (New et al. 2017; Sonneveldt et al., 2019):
 - Produce an online tool for in-country monitoring (FPET) and R package with use cases (Guranich et al., 2021)
 - Main usage group: in-country M&E officers
 - Include service statistics data

- FPET evolved to better capture local contexts
 - Model updates: Improved predictive performance and accounting for survey data quality issues (Cahill et al., 2018; Susmann et al., 2023), improved use of service statistics data (Cahill et al., 2022)
 - Consider specific population subgroups: unmarried women (Kantorova et al., 2020), subnational estimation

Model development:
- Married and national
- Further model updates
- Specific subgroups

FPET = a tool for local monitoring

![Graph showing trend in family planning indicators over time with markers for specific categories like married and unmarried women, and subnational estimation.](image)
FP monitoring for smaller subgroups of women
FP monitoring for smaller subgroups of women

• Existing work
FP monitoring for smaller subgroups of women

• Existing work
 • FPET: estimation for population subgroups, mainly defined by marital status and subnational area
FP monitoring for smaller subgroups of women

• Existing work
 • FPET: estimation for population subgroups, mainly defined by marital status and subnational area
 • FP equity tool (Bietsch and Sonneveldt, 2020) and DHS dashboard: Estimation focused on one characteristic at a time, e.g., age or wealth or geographical region

Bietsch and Sonneveldt, 2022: Demand satisfied in Nigeria 2018
FP monitoring for smaller subgroups of women

• Existing work
 • FPET: estimation for population subgroups, mainly defined by marital status and subnational area
 • FP equity tool (Bietsch and Sonneveldt, 2020) and DHS dashboard: Estimation focused on one characteristic at a time, e.g., age or wealth or geographical region
 • IDM small-area estimation tool based on Mercer et al., (2019): combination of geographical region and specific age-parity groups
FP monitoring for smaller subgroups of women

• Existing work
 • FPET: estimation for population subgroups, mainly defined by marital status and subnational area
 • FP equity tool (Bietsch and Sonneveldt, 2020) and DHS dashboard: Estimation focused on one characteristic at a time, e.g., age or wealth or geographical region
 • IDM small-area estimation tool based on Mercer et al., (2019): combination of geographical region and specific age-parity groups
 • What about FP estimates for population groups that are cross-tabulated by different characteristics?

Bietsch and Sonneveldt, 2022: Demand satisfied in Nigeria 2018
FP monitoring for smaller subgroups of women

• Existing work
 • FPET: estimation for population subgroups, mainly defined by marital status and subnational area
 • FP equity tool (Bietsch and Sonneveldt, 2020) and DHS dashboard: Estimation focused on one characteristic at a time, e.g., age or wealth or geographical region
 • IDM small-area estimation tool based on Mercer et al., (2019): combination of geographical region and specific age-parity groups
• What about FP estimates for population groups that are cross-tabulated by different characteristics?
 • Example: women who are young & parity 1+ & live in Federal Capital Territory & poor & no primary education
FP monitoring for smaller subgroups of women

• Existing work
 • FPET: estimation for population subgroups, mainly defined by marital status and subnational area
 • FP equity tool (Bietsch and Sonneveldt, 2020) and DHS dashboard: Estimation focused on one characteristic at a time, e.g., age or wealth or geographical region
 • IDM small-area estimation tool based on Mercer et al., (2019): combination of geographical region and specific age-parity groups
• What about FP estimates for population groups that are cross-tabulated by different characteristics?
 • Example: women who are young & parity 1+ & live in Federal Capital Territory & poor & no primary education
 • Important! Existing estimates may mask variation
FP monitoring for smaller subgroups of women

• Existing work
• FPET: estimation for population subgroups, mainly defined by marital status and subnational area
• FP equity tool (Bietsch and Sonneveldt, 2020) and DHS dashboard: Estimation focused on one characteristic at a time, e.g., age or wealth or geographical region
• IDM small-area estimation tool based on Mercer et al., (2019): combination of geographical region and specific age-parity groups
• What about FP estimates for population groups that are cross-tabulated by different characteristics?
 • Example: women who are young & parity 1+ & live in Federal Capital Territory & poor & no primary education
 • Important! Existing estimates may mask variation
 • The difficulty: data sparsity & so many groups to consider
Producing model-based estimates of FP indicators for small groups
Producing model-based estimates of FP indicators for small groups

- Goal: For some population group g, estimate group-specific FP outcome μ_g
Producing model-based estimates of FP indicators for small groups

• **Goal:** For some population group g, estimate group-specific FP outcome μ_g

• **Example used:**
 - Estimates for married women in Nigeria in 2018, using DHS data
 - Outcome μ_g: demand satisfied with modern methods
 - Subgroups g are defined by cross-tabulations of covariates of interest: geographical region - age - parity - wealth - education - urban/rural classifications
Producing model-based estimates of FP indicators for small groups

- **Goal:** For some population group g, estimate group-specific FP outcome μ_g

- **Example used:**
 - Estimates for married women in Nigeria in 2018, using DHS data
 - Outcome μ_g: demand satisfied with modern methods
 - Subgroups g are defined by cross-tabulations of covariates of interest: geographical region - age - parity - wealth - education - urban/rural classifications

- **Approach:** Bayesian hierarchical sparse regression model
 - Joint work with Jadey Wu, Zhengfan Wang, and Chuchu Wei (UMass Amherst)
Bayesian hierarchical sparse regression model

Data model: \(y_{g,c} \mid \mu_g, \epsilon_c \sim \text{Bin}(n_{g,c}, \text{invlogit}(\logit(\mu_g) + \epsilon_c)) \), where

- \(y_{g,c} \) refers to \# of users among \(n_{g,c} \) women with a demand for FP in group \(g \), cluster \(c \),
- \(\epsilon_c \) refers to a cluster effect to capture across-cluster variability.

Expression for \(\mu_g \):

\[
\logit(\mu_g) = \alpha_{r[g]} + \sum_{d=1}^{D} \sum_{k=1}^{K_d} (\beta_k^{(d)} + \eta_{d,k}^{(d)}\,x_{k,g}^{(d)}) + \sum_{d_1=1}^{D} \sum_{k_1=1}^{K_{d_1}} \sum_{d_2=1}^{D} \sum_{k_2=1}^{K_{d_2}} \beta_{d_1,d_2,k_1,k_2}^{(d_1,d_2)} x_{k_1,g}^{(d_1)} x_{k_2,g}^{(d_2)} + \epsilon_g
\]

- \(x_{k,g}^{(d)} \) = dummy variables to capture the group-specific category for covariate \(d \), with \(d = 1,...,D \) referring to age, parity, wealth, education, residence. Specifically, \(x_{k,g}^{(d)} = 1 \) if group \(g \) is in category \(k = 1,...,K_d \) for covariate \(d \), 0 otherwise.
- \(r[g] \) refers to the region of group \(g \)
Bayesian hierarchical sparse regression model

Data model: $y_{g,c} | \mu_g, \epsilon_c \sim Bin(n_{g,c}, \text{invlogit}(\logit(\mu_g) + \epsilon_c))$, where

- $y_{g,c}$ refers to # of users among $n_{g,c}$ women with a demand for FP in group g, cluster c,
- ϵ_c refers to a cluster effect to capture across-cluster variability.

Expression for μ_g:

\[
\logit(\mu_g) = \alpha_{r[g]} + \sum_{d=1}^{D} \sum_{k=1}^{K_d} (\beta_k^{(d)} + \eta_{r[g],k}^{(d)}) x_{k,g}^{(d)} + \sum_{d=1}^{D} \sum_{d_1 \neq d_2} \sum_{k_1=1}^{K_{d_1}} \sum_{k_2=1}^{K_{d_2}} \beta_{k_1,k_2}^{(d_1,d_2)} x_{k_1,g}^{(d_1)} x_{k_2,g}^{(d_2)} + \epsilon_g
\]

- $x_{k,g}^{(d)}$ = dummy variables to capture the group-specific category for covariate d, with $d = 1,...,D$ referring to age, parity, wealth, education, residence. Specifically, $x_{k,g}^{(d)} = 1$ if group g is in category $k = 1,...,K_d$ for covariate d, 0 otherwise.
- $r[g]$ refers to the region of group g
Bayesian hierarchical sparse regression model

Data model: \(y_{g,c} \mid \mu_g, \epsilon_c \sim \text{Bin}(n_{g,c}, \text{invlogit}(\logit(\mu_g) + \epsilon_c)) \), where

- \(y_{g,c} \) refers to \# of users among \(n_{g,c} \) women with a demand for FP in group \(g \), cluster \(c \),
- \(\epsilon_c \) refers to a cluster effect to capture across-cluster variability.

Expression for \(\mu_g \):

\[
\logit(\mu_g) = \alpha_{r[g]} + \sum_{d=1}^{D} \sum_{k=1}^{K_d} (\beta_k^{(d)} + \eta_{r[g],k}^{(d)}) x_{k,g}^{(d)} + \sum_{d_1=1}^{D} \sum_{k_1=1}^{K_{d_1}} \sum_{d_2=1}^{D} \sum_{k_2=1}^{K_{d_2}} \beta_{k_1,k_2}^{(d_1,d_2)} x_{k_1,g}^{(d_1)} x_{k_2,g}^{(d_2)} + \epsilon_g
\]

- \(x_{k,g}^{(d)} \) = dummy variables to capture the group-specific category for covariate \(d \), with \(d = 1,...,D \) referring to age, parity, wealth, education, residence. Specifically, \(x_{k,g}^{(d)} = 1 \) if group \(g \) is in category \(k = 1,...,K_d \) for covariate \(d \), 0 otherwise.
- \(r[g] \) refers to the region of group \(g \)

Input = cluster-level data \((y_{g,c}, n_{g,c})\)

Output = Estimates for outcome of interest \(\mu_g \)
Bayesian hierarchical sparse regression model

Data model:
\[y_{g,c} \mid \mu_g, \epsilon_c \sim \operatorname{Bin}(n_{g,c}, \text{invlogit}(\logit(\mu_g) + \epsilon_c)), \]
where
- \(y_{g,c} \) refers to \# of users among \(n_{g,c} \) women with a demand for FP in group \(g \), cluster \(c \),
- \(\epsilon_c \) refers to a cluster effect to capture across-cluster variability.

Expression for \(\mu_g \):
\[
\logit(\mu_g) = \alpha_{r[g]} + \sum_{d=1}^{D} \sum_{k=1}^{K_d} \left(\beta_k^{(d)} + \eta_{r[g],k}^{(d)} \right) x_{k,g}^{(d)} + \sum_{d_1=1}^{D} \sum_{k_1=1}^{K_{d_1}} \sum_{d_2=1}^{D} \sum_{k_2=1}^{K_{d_2}} \beta_{k_1,k_2}^{(d_1,d_2)} x_{k_1,g}^{(d_1)} x_{k_2,g}^{(d_2)} + \epsilon_g \]
where
- \(x_{k,g}^{(d)} \) = dummy variables to capture the group-specific category for covariate \(d \), with \(d = 1, \ldots, D \) referring to age, parity, wealth, education, residence. Specifically, \(x_{k,g}^{(d)} = 1 \) if group \(g \) is in category \(k = 1, \ldots, K_d \) for covariate \(d \), 0 otherwise.
- \(r[g] \) refers to the region of group \(g \)

Account for the survey design and across-cluster variability

Input: cluster-level data \((y_{g,c}, n_{g,c})\)

Output: Estimates for outcome of interest \(\mu_g \)
Bayesian hierarchical sparse regression model

Data model:
\[y_{g,c} \mid \mu_g, \epsilon_c \sim Bin(n_{g,c}, \text{invlogit} (\logit(\mu_g) + \epsilon_c)) \], where
- \(y_{g,c} \) refers to # of users among \(n_{g,c} \) women with a demand for FP in group \(g \), cluster \(c \),
- \(\epsilon_c \) refers to a cluster effect to capture across-cluster variability.

Expression for \(\mu_g \):
\[
\logit(\mu_g) = \alpha_{r[g]} + \sum_{d=1}^{D} \sum_{k=1}^{K_d} (\beta_{k}^{(d)} + \eta_{r[g],k}^{(d)}) x_{k,g}^{(d)} + \sum_{d_1=1}^{D} \sum_{k_1=1}^{K_{d_1}} \sum_{d_2 \neq d_1, k_2=1}^{K_{d_2}} \beta_{k_1,k_2}^{(d_1,d_2)} x_{k_1,g}^{(d_1)} x_{k_2,g}^{(d_2)} + \epsilon_g
\]
- \(x_{k,g}^{(d)} \) = dummy variables to capture the group-specific category for covariate \(d \), with \(d = 1,...,D \) referring to age, parity, wealth, education, residence. Specifically, \(x_{k,g}^{(d)} = 1 \) if group \(g \) is in category \(k = 1,...,K_d \) for covariate \(d \), 0 otherwise.
- \(r[g] \) refers to the region of group \(g \)

Account for the survey design and across-cluster variability

Specify subgroup-specific outcomes using
- main effects and 2nd order interaction terms,
- region-specific intercepts and regression coefficients,
- group-specific term \(\epsilon_g \)
Bayesian hierarchical sparse regression model (ctd)

Expression for μ_g:

$$\text{logit}(\mu_g) = \alpha_{r[g]} + \sum_{d=1}^{D} \sum_{k=1}^{K_d} (\beta_{k}^{(d)} + \eta_{r,g,k}^{(d)}) x_{k,g}^{(d)} + \sum_{d_1=1}^{D} \sum_{d_2=k_{d_1}^{*}}^{K_d} \sum_{d_2 \neq d_1}^{K_d} \sum_{k_{d_1}}^{K_d} \beta_{k_{d_1},k_{d_2}}^{(d_1,d_2)} x_{k_{d_1},g}^{(d_1)} x_{k_{d_2},g}^{(d_2)} + \varepsilon_g$$

Parameters:

- Regional intercepts α_r and regression parameters $\eta_{r,g,k}^{(d)}$ are estimated hierarchically/with spatial structure.

- Regression coefficients for main effects $\beta_{k=1:K_d}^{(d)}$ and interaction terms $\beta_{k_1,k_2=1:K_d}^{(d_1,d_2)}$ and $\eta_{r,1:K_d}^{(d)}$ are estimated using a RW1 set-up:

 - Re-parametrize to sum to zero $\sum_k \beta_k = 0$ and define $\Delta \beta_k = \beta_k - \beta_{k-1}$

 - To encourage shrinkage of irrelevant 1st order differences, we use horseshoe priors (Piironen et al., 2017), e.g., $\Delta \beta_k \mid \tau, \lambda_d \sim N(0, \tau^2 \lambda_k^2)$

- Subgroup effect ε_g captures unexplained variability across groups and is estimated hierarchically, i.e. $\varepsilon_g \mid \sigma_\varepsilon \sim N(0, \sigma_\varepsilon^2)$
Bayesian hierarchical sparse regression model (ctd)

Expression for μ_g:

$$\text{logit}(\mu_g) = \alpha_{rg} + \sum_{d=1}^{D} \sum_{k=1}^{K_d} (\beta_{k}^{(d)} + \eta_{r[d],k}^{(d)})x_{k,g}^{(d)} + \sum_{d_1=1}^{D} \sum_{k_1}^{K_{d_1}} \sum_{d_2}^{D} \sum_{k_2}^{K_{d_2}} \beta_{k_1,k_2}^{(d_1,d_2)}x_{k_1,g}^{(d_1)}x_{k_2,g}^{(d_2)} + \epsilon_g$$

Parameters:

- Regional intercepts α_r and regression parameters $\eta_r^{(d)}$ are estimated hierarchically/with spatial structure.

- Regression coefficients for main effects $\beta_{k=1:K_d}^{(d)}$ and interaction terms $\beta_{k_1,k_2=1:K_{d_2}}^{(d_1,d_2)}$ and $\eta_{r=1:K_d}^{(d)}$ are estimated using a RW1 set-up:

- Re-parametrize to sum to zero $\sum_k \beta_k = 0$ and define $\Delta \beta_k = \beta_k - \beta_{k-1}$

- To encourage shrinkage of irrelevant 1st order differences, we use horseshoe priors (Piironen et al., 2017), e.g., $\Delta \beta_k | \tau, \lambda_d \sim N(0, \tau^2 \lambda_k^2)$

- Subgroup effect ϵ_g captures unexplained variability across groups and is estimated hierarchically, i.e. $\epsilon_g | \sigma_\epsilon \sim N(0, \sigma_\epsilon^2)$

Capture differences across regions
Bayesian hierarchical sparse regression model (ctd)

Expression for μ_g:

$$\text{logit}(\mu_g) = \alpha_{r[g]} + \sum_{d=1}^{D} \sum_{k=1}^{K_d} (\beta_{k}^{(d)} + \eta_{r[d],k}^{(d)})x_{k,g}^{(d)} + \sum_{d_1=1}^{D} \sum_{k_1=1}^{K_{d_1}} \sum_{d_2=1}^{D} \sum_{k_2=1}^{K_{d_2}} \beta_{k_1,k_2}^{(d_1,d_2)}x_{k_1,g}^{(d_1)}x_{k_2,g}^{(d_2)} + \epsilon_g$$

Parameters:

- Regional intercepts α_r and regression parameters $\eta_r^{(d)}$ are estimated hierarchically with spatial structure.
- Regression coefficients for main effects $\beta_{k=1:K_d}^{(d)}$ and interaction terms $\beta_{k_1,k_2=1:K_{d_2}}^{(d_1,d_2)}$ and $\eta_{r,1:K_d}^{(d)}$ are estimated using a RW1 set-up.
- Re-parametrize to sum to zero $\sum_k \beta_k = 0$ and define $\Delta \beta_k = \beta_k - \beta_{k-1}$.
- To encourage shrinkage of irrelevant 1st order differences, we use horseshoe priors (Piironen et al., 2017), e.g., $\Delta \beta_k \mid \tau, \lambda_d \sim N(0, \tau^2 \lambda_k^2)$.
- Subgroup effect ϵ_g captures unexplained variability across groups and is estimated hierarchically, i.e. $\epsilon_g \mid \sigma_\epsilon \sim N(0, \sigma_\epsilon^2)$.

Capture differences across regions

Capture relations between outcome and each covariate, and how this relationship varies across levels of other covariates
Bayesian hierarchical sparse regression model (ctd)

Expression for μ_g:

\[
\logit(\mu_g) = \alpha_{rg} + \sum_{d=1}^{D} \sum_{k=1}^{K_d} (\beta_k^{(d)} + \eta_r^{(d)k}) x_k^{(d)} + \sum_{d_1=1}^{D} \sum_{k_1 \neq k_1}^{K_{d_1}} \sum_{d_2=1}^{D} \sum_{k_2 \neq k_2}^{K_{d_2}} \beta_{k_1k_2}^{(d_1,d_2)} x_{k_1}^{(d_1)} x_{k_2}^{(d_2)} + \epsilon_g
\]

Parameters:

- Regional intercepts α_r and regression parameters $\eta_r^{(d)}$ are estimated hierarchically/with spatial structure.
- Regression coefficients for main effects $\beta_k^{(d)}$ and interaction terms $\beta_{k_1k_2}^{(d_1,d_2)}$ and $\eta_r^{(d)}$ are estimated using a RW1 set-up.
- Re-parametrize to sum to zero $\sum_k \beta_k = 0$ and define $\Delta \beta_k = \beta_k - \beta_{k-1}$.
- To encourage shrinkage of irrelevant 1st order differences, we use horseshoe priors (Piironen et al., 2017), e.g., $\Delta \beta_k | \tau, \lambda_d \sim N(0, \tau^2 \lambda_k^2)$.
- Subgroup effect ϵ_g captures unexplained variability across groups and is estimated hierarchically, i.e. $\epsilon_g | \sigma_\epsilon \sim N(0, \sigma_\epsilon^2)$.
Producing model-based estimates of FP indicators for small groups (ctd)
Producing model-based estimates of FP indicators for small groups (ctd)

- **Goal:** For some population group \(g \), estimate group-specific FP outcome \(\mu_g \)

- **Example used:**
 - Estimates for married women in Nigeria in 2018, using DHS data
 - Outcome \(\mu_g \): demand satisfied with modern methods
 - Subgroups \(g \) are defined by cross-tabulations of covariates of interest: geographical region - age - parity - wealth - education - urban/rural classifications
Producing model-based estimates of FP indicators for small groups (ctd)

- **Goal:** For some population group g, estimate group-specific FP outcome μ_g

- **Example used:**
 - Estimates for married women in Nigeria in 2018, using DHS data
 - Outcome μ_g: demand satisfied with modern methods
 - Subgroups g are defined by cross-tabulations of covariates of interest: geographical region - age - parity - wealth - education - urban/rural classifications

- **Approach:** Bayesian hierarchical sparse regression model
 - Assess differentials based on unique combinations of covariates
 - Data model: account for the survey design and across-cluster variability
Producing model-based estimates of FP indicators for small groups (ctd)

- **Goal:** For some population group \(g \), estimate group-specific FP outcome \(\mu_g \)

- **Example used:**
 - Estimates for married women in Nigeria in 2018, using DHS data
 - Outcome \(\mu_g \): demand satisfied with modern methods
 - Subgroups \(g \) are defined by cross-tabulations of covariates of interest: geographical region - age - parity - wealth - education - urban/rural classifications

- **Approach:** Bayesian hierarchical sparse regression model
 - Assess differentials based on unique combinations of covariates
 - Data model: account for the survey design and across-cluster variability

- **Computation:**
 - Hamilton Monte Carlo, using Stan/Brms package in R
 - ~5 - 10 minutes to fit model to Nigeria 2018 DHS data
What do the model-based estimates show?
What do the model-based estimates show?

1. We find substantive differences between subgroups
What do the model-based estimates show?

1. We find substantive differences between subgroups
2. Differences would be masked if considering just one or a few dimensions
What do the model-based estimates show?

1. We find substantive differences between subgroups
2. Differences would be masked if considering just one or a few dimensions
What do the model-based estimates show?

1. We find substantive differences between subgroups
2. Differences would be masked if considering just one or a few dimensions

Main effects for age:
Demand satisfied increases with age

Interaction effects for being in “richer” group & age:
Among the richer women, younger age groups have lower-than-expected demand satisfied
What do the model-based estimates show? (Ctd)

1. We find substantive differences between subgroups
2. Differences would be masked if considering just one or a few dimensions
What do the model-based estimates show? (Ctd)

1. We find substantive differences between subgroups
2. Differences would be masked if considering just one or a few dimensions

Demand satisfied for Federal Capital Territory, for women in richer subgroups, <35 years old
What’s next – using model-based estimates
What’s next – using model-based estimates

1. Use findings (average differentials, subgroup estimates) to help target interventions
 - In parallel work: re-evaluate the impact of interventions using modern methods for causal inference and consider if subgroup characteristics act as effect modifiers
What’s next – using model-based estimates

1. Use findings (average differentials, subgroup estimates) to help target interventions
 • In parallel work: re-evaluate the impact of interventions using modern methods for causal inference and consider if subgroup characteristics act as effect modifiers

2. Consider summary measures, taking account of subgroup population size and uncertainty, to evaluate process in improving equity
What’s next – using model-based estimates

1. Use findings (average differentials, subgroup estimates) to help target interventions
 • In parallel work: re-evaluate the impact of interventions using modern methods for causal inference and consider if subgroup characteristics act as effect modifiers

2. Consider summary measures, taking account of subgroup population size and uncertainty, to evaluate process in improving equity

3. Consider other outcomes of interest
 • Build off recent work to define alternative measures of FP
 • E.g., better account for sexual activity, different definitions of demand and unmet need, ...
What’s next – the process of producing estimates
What’s next – the process of producing estimates

<table>
<thead>
<tr>
<th>How it started</th>
<th>How it’s going</th>
<th>What’s next?</th>
</tr>
</thead>
</table>

What’s next – the process of producing estimates

How it started

Model development: Married & National

How it’s going

FPET = a tool for local monitoring

What’s next?
What’s next – the process of producing estimates

How it started

Model development: Married & National

FPET = a tool for local monitoring

How it’s going

Model development, incl. for smaller subgroups

FPET = a tool for local monitoring

What’s next?
What’s next – the process of producing estimates

How it started

Model development: Married & National

FPET = a tool for local monitoring

How it’s going

Model development, incl. for smaller subgroups

FPET = a tool for local monitoring

What’s next?

Locally relevant FP modeling and monitoring by local actors
Locally relevant FP modeling and monitoring by local actors: how?

Model development

FPET = a tool for local monitoring
Locally relevant FP modeling and monitoring by local actors: how?

Model development

Context-focused model updates & advanced usage

FPET = a tool for local monitoring
Locally relevant FP modeling and monitoring by local actors: how?

- In the short term, consider building a “midfield” with
 - In-country applied data scientists/modelers
 - Tools that enable advanced usage: Advanced user-specified settings ⇒ Modifiable software
Locally relevant FP modeling and monitoring by local actors: how?

• In the short term, consider building a “midfield” with
 • In-country applied data scientists/modelers
 • Tools that enable advanced usage: Advanced user-specified settings ⇒ Modifiable software
• FP is well-placed for this next step:

Model development

Context-focused model updates & advanced usage

FPET = a tool for local monitoring
Locally relevant FP modeling and monitoring by local actors: how?

- In the short term, consider building a “midfield” with
 - In-country applied data scientists/modelers
 - Tools that enable advanced usage: Advanced user-specified settings ⇒ Modifiable software
- FP is well-placed for this next step:
 - **Actors:** Track20 project with local M&E officers; Countdown’s in-country FP initiative; FP2030 regional hubs; Active international FP measurement community; ...
Locally relevant FP modeling and monitoring by local actors: how?

- In the short term, consider building a “midfield” with
 - In-country applied data scientists/modelers
 - Tools that enable advanced usage: Advanced user-specified settings ⇒ Modifiable software
- FP is well-placed for this next step:
 - **Actors**: Track20 project with local M&E officers; Countdown's in-country FP initiative; FP2030 regional hubs; Active international FP measurement community; ...
 - **Tools**: Open-source software tools and training material (e.g., R packages for data processing and model fitting; webinars); we are finalizing FPET-related tools that allow for advanced usage.
Measuring inequity in family planning:
Towards locally relevant monitoring by local actors

• Existing estimates may mask variation in groups defined by different combinations of demographic characteristics.

• We developed a Bayesian hierarchical sparse regression model to produce subgroup estimates. Model-based estimates reveal inequities and can be used to target interventions.

• Consider building a midfield to further increase local FP modeling capacity?

Contact: Leontine Alkema (lalkema@umass.edu, leontinealkema.github.io/alkema_lab)