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Risk inequality in the susceptible-infected (SI) model

Homogeneous risk
(susceptibility x connectivity):
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Heterogeneous connectivity:
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False homogeneity causes underestimation of
reproduction numbers from endemic states
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ndividual variation in susceptibility/connectivity
responds to selection making risk mean and risk

variance appear lower (SIRS model)
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Incidence rate ratios are not directly informative
for transmission modeling.

We propose new methods involving ReModeling
Selection (RMS) in study design and analysis.

(D

The method of choice will depend on the disease
and research guestion.




Suppose an SIS endemic infection with inc

being infected at high frequency (e.g., ma

ividuals
aria)

1 . . .
S 0.8} B Model -
£06] B Data -
204
a 0.2

0
0 1 2 3 4 5 6
Number of cases per individual
X1A(a) Y x10(1)A(a) Y Y x10(n — 1)A(a) Y
LR: | Sop > 11 > S110 > I21 > " =7 Sp-11 » Ihs T
x,A(a) Y x,6(1)A(a) y % x,0(n — 1)A(a) Y
HR:| Sop > Lz > Si2 —» L2 7> M Sn-1,2 » I

Corder RM, Ferreira MU, MGMG 2020 Modelling the epidemiology of residual Plasmodium vivax malaria in a

heterogeneous host population: A case study in the Amazon Basin. PLOS Comput Biol 16:€1007377.



Suppose an SIS endemic infection with individuals

being infected at high frequency (e.g., malaria)
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tuberculosis)
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Now consider a not so frequent SIRS endemic

infection (e.g.
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Estimation of risk distributions

Brazil
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Estimation of risk distributions

Brazil

' A

s
w )

Lo |
r ‘&jfff- &

e

L a [ T
* Fha i i
- A ¥ :
s - aby
=
1

E .
Lo

100 : : :
A risk distribution [variance 8.9] B
(model input)
— 80 B
X . . -
@ 0 5 10 15
o 60°f
T c U
2 (0.51)
o= 40t
5 ﬁu
0
20 | / n @ ?) l \ﬂ/
¢ 6 (1-¢9)o
0 : : : ' B (1- 9)1
0 20 40 60 80 100
, ( -0) -— (3 2)

— population (%) ®

> 5 [variance 4.0] D. B mcndence [varlance 4.0] E

% (model output)

o

o0 — ' ' = |

+ 0 5 10 15 10 15

TB rate (relative to mean)

B rate (relative to mean)

—
o
o

o
o
(94) Aouanbauy

o

—
o
o

o
o
(94) Aouanbauy

o



The nuisance of moving targets in TB control

a)
b)

c)

d)

Use ”an insufficiently heterogeneous model” to estimate the required control effort to meet a
stipulated target;

Apply the control in a heterogeneous population, recognize its underperformance (quantify the
error after the first year), and use the model a second time to re-estimate the required effort;
Increase the control effort accordingly in the heterogeneous population, recognize again that it
underperforms (quantify the error after the second year), and re-estimate the required effort a

third time;
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The nuisance of moving targets in TB control

a) Use "an insufficiently heterogeneous model” to estimate the required control effort to meet a
stipulated target;

b) Apply the control in a heterogeneous population, recognize its underperformance (quantify the
error after the first year), and use the model a second time to re-estimate the required effort;

c) Increase the control effort accordingly in the heterogeneous population, recognize again that it
underperforms (quantify the error after the second year), and re-estimate the required effort a
third time;
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The nuisance of moving targets in TB control

S Ue9N

a) Use "an insufficiently heterogeneous model” to estimate the required control effort to meet a
stipulated target;

b) Apply the control in a heterogeneous population, recognize its underperformance (quantify the
error after the first year), and use the model a second time to re-estimate the required effort;

c) Increase the control effort accordingly in the heterogeneous population, recognize again that it
underperforms (quantify the error after the second year), and re-estimate the required effort a
third time;
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Risk Inequality Coefficient (RIC)
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Gini Coefficient according to World Bank:
Vietnam (0.38); Brazil (0.51); Portugal (0.32)
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Further areas of RMS research and development
(based on selection gradients):

- Epidemics (e.g., COVID-19)

- Efficacy estimation for susceptibility moditying
interventions such as vaccines and Wolbachia

- Estimation of microbial fithess and evolution
(relevant to AMR)



In conclusion

1) Misrepresentation of heterogeneity in risk of infection biases data interpretation
and compromises intervention impact modeling;

2) Risk distributions can be estimated by remodeling selection (RMS);

3) Early work addressed malaria, tuberculosis, COVID-19 in humans, vaccine
efficacy in fish, Wolbachia efficacy in flies and mosquitoes;

4) Ongoing work concerns vaccines in humans, fitness and evolution in bacteria.
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