

2023 IDM Annual Symposium

Advancing Simulation Methodology for Identifying Optimal Healthcare Policy During COVID - 19 Pandemic

May 23, 2023

Serin Lee^{*}, Shan Liu, Zelda B.Zabinsky Industrial & Systems Engineering, University of Washington, Seattle, WA

*serinlee@uw.edu

- Health behaviors are complex and can change over time
- Modelling studies provides insights into the relationship between health behaviors and policy outcomes for policy makers

Figure: https:// www.sycamoreinstitutetn.org /drivers-of-health/

Questions to tackle COVID - 19 pandemic

In order to minimize the disease burden,

- 1. How effective are **non pharmaceutical interventions (NPIs)** when vaccination is unavailable? Can we control the pandemic to the level of Washington state's objective? Are the results **robust** to model uncertainty?
- 2. When viruses keep **mutating**, will **vaccination** remain effective policies? Will **NPIs** remain effective policies?
- To address vaccine hesitancy,
 - 3. Given individuals make different vaccination behavior decisions , whom should be targeted to promote vaccination ?

Research Question 1

- How effective are non pharmaceutical interventions (NPIs) when vaccination is unavailable?
- Can we control the pandemic to the level of WA objective?
- Are the results robust to model uncertainty?

Lee S,Zabinsky ZB, Wasserheit JN,Kofsky SM, Liu S. COVID19 pandemic response simulation in a large city: Impact of nonpharmaceutical interventions on reopening society. Medical Decision Making. 2021 May;41(4):419 - 29.

Overview of large - scale agent-based model

Overview of large - scale agent-based model

- Calibration period: January 15, 2020, to May 31, 2020
- Fit NPIs compliance history by observing Seattle's sequence of interventions
- Resulted in seven clusters, narrowed down to two parameter sets (Cluster 2 and Cluster 6)

Calibration results

- Cluster 2: High contacts in **non school** places (household, neighborhood, workplace)
- Cluster 6: High contacts in **school** setting

Research question 1

- 1. How effective are **non pharmaceutical interventions (NPIs)** when vaccination is unavailable?
- 2. Can we control the pandemic to the level of Washington state's objective?
- 3. Are the results **robust** to model uncertainty?

NPIs	Parameter Settings				
Social Distancing	Open (0%), Low (20%), Medium (50%), High (80%)				
Face Mask Use	0 % , 25% , 50% , 75% , 10 0 %				
School Closure	Open (0 %), 25% , Hybrid (50%) , 75% , Closed (10 0 %)				
Testing and Contact Tracing	Low, Medium , High				

Research question 1-1

How effective are **non pharmaceutical interventions (NPIs)** when vaccination is unavailable?

Cluster 2

Research question 1-2

Can we control the pandemic to the level of Washington state's objective?

Cluster 2

Research question 1-3

Are the results **robust** to model uncertainty?

Findings for research question 1

When the wild strain of SARS-CoV-2 spread and vaccination is unavailable,

- Face mask use and social distancing are important regardless of model uncertainty
- Strong school closure may be effective only when a society's student contacts are high
- Current projections of testing and contact tracing are insufficient to contain COVID-19 without other NPIs

Research Question 2

- When viruses keep mutating , will vaccination remain effective policies?
- When viruses keep **mutating** , will **NPIs** remain effective policies?

LEE S,Zabinsky ZB, Wasserheit JN, Ross J, Chen S, Liu S. Impact of Vaccination and NonPharmaceutical Interventions with Possible COVID-19 Viral Evolutions Using an Agent -Based Simulation. Available at SSRN 4382858. 2023 Mar 22.

Updated large - scale agent-based model

Updated large - scale agent-based model

Model calibration

- Calibration period: January 15, 2020, to December 31, 2020
- Fit NPIs compliance history by observing Seattle's sequence of interventions
- Resulted in one parameter set

Research question 2

- 1. When viruses keep **mutating**, will **vaccination** remain effective policies?
- 2. When viruses keep **mutating**, will **NPIs** remain effective policies?

Policy Scenarios	Parameter Settings				
Vaccination willingness reduction for each additional dose	50% less, 25% less , Same				
NPI Policy	Timeline 1 , Timeline 2, Threshold				

Research question 2

Virus mutation scenarios

an-20	Jan-21	Apr-	21	Dec-21	Jun-	22	Dec-22		-nuL 	23	Dec-23
Original Wuhan Strain Alpha Delta		Delta	Omicron (B.1.1.529)	New variant (Gen 1)		New variant (Gen 2)		New variant (Gen 3	3)	
Mutation Scenarios Changes in infectivity				Changes in disease severity			Changes in immune evasion				
S1							Pessimistic				
S2				Same			Neutral				
S3		more infec	tious				Optimistic (Pan-coronavirus vaccine)				
S4	50 %	more mec	lious	50% less severe			Pessimistic				
S5						Neutral					
S 6							Optimistic (Pan-coronavirus vaccine)				
S7				Same			Pessimistic				
S8						Neutral					
S9		Como					Optimistic (Pan-coronavirus vaccine)				
S 10		Same		50% less severe			Pessimistic				
S 11						Neutral					
S 12							Optimistic (Pan-coronavirus vaccine)				

Research question 2 - 1

When viruses keep **mutating**, will **vaccination** remain effective policies?

- 6 mutation scenarios, 3 vaccine willingness
- Increasing vaccination willingness is effective with optimistic immune evasion (pan - coronavirus vaccine, S3 and S12)

Research question 2 - 2

When viruses keep **mutating**, will **NPI policy** remain effective policies?

- ➢ 6 mutation scenarios, 3 NPI policies
- Strengthening NPI policy always reduce mortality , regardless of virus mutation scenarios

Findings for research question 2

When the SARS-CoV-2 keep mutates,

- Developing pan coronavirus vaccine has high potential in reducing death toll with increased vaccination willingness
- Strengthening NPI policy is robust to viral mutation

Research Question 3

 To address vaccine hesitancy, given individuals make different vaccination behavior decisions, whom should be targeted to promote vaccination ?

Networked compartmental model

Networked compartmental model

Regional Group

Age Group

Research question 3

Given individuals make different vaccination behavior decisions whom should be targeted to promote vaccination ?

Ongoing research approach

- Vaccination behavior decision depends on rational and emotional judgement and active pro -vaccination neighbors who share opinions
- Allocate resources by age and geographic groups
- Get near optimal solutions while considering fairness

Thank you! Questions?

Appendix

Model calibration

- Step 1
 - Use Latin hypercube sampling method to generate 1,000 parameter sets.
 - Randomly infect 10 random people and simulate for 30 days.
 - Select parameter sets whose basic reproduction number (R₀) is within range (1.5-3.5)
- Step 2
 - Cluster the selected parameter sets and get centroid of each cluster
 - With the centroid points, simulate for the full calibration period.
 - Select centroid points whose simulated infection-fatality ratio is within range (0.005-0.008)

Parameter sets

1,000

65

2

Model calibration

- Step 1
 - Use Latin hypercube sampling method to generate 1,000 parameter sets.
 - Randomly infect 10 random people and simulate for 30 days.
 - Select parameter sets whose basic reproduction number (R₀) is within range (2-4)
- Step 2
 - Cluster the selected parameter sets and get centroid of each cluster
 - With the centroid points, simulate for the full calibration period.
 - Select centroid points with the lowest mean absolute error on health outcomes

Parameter sets

1,000

55

Bivalent vaccination rate

King County, WA (May 10, 2023)

.

Select a vaccination status: Received updated booster

What percent of residents received an updated booster?

