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The software infrastructure as VAs are scaled up
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The openVA Toolkit for Verbal Autopsies

Abstract:

Verbal autopsy (VA) is a survey-based tool widely used to infer cause of death (COD) in regions without complete-
coverage civil registration and vital statistics systems. In such settings, many deaths happen outside of medical facilties
and are not officially documented by a medical professional. VA surveys, consisting of signs and symptoms reported by a
person close to the decedent, are used to infer the COD for an individual, and to estimate and monitor the COD
distribution in the population. Several classification algorithms have been developed and widely used to assign causes of
death using VA data. However, the incompatibility between different idiosyncratic model implementations and required
data structure makes it difficult to systematically apply and compare different methods. The openVA package provides
the first standardized framework for analyzing VA data that is compatible with all openly available methods and data

structure. It provides an open-source, R implementation of several most widely used VA methods. It supports different
data input and output formats, and

about the between causes and symptoms. The

paper discusses the relevant algorithms, their implementations in R packages under the openVA suite, and demonstrates
the pipeline of mode fitting, summary,
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Data collection and models come together

Many VA studies focus on a single study population. As method and software
developers, we need to think beyond a single analysis.
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Many VA studies focus on a single study population. As method and software
developers, we need to think beyond a single analysis.

In this talk, | will briefly (partially) address two questions:
» We have collected many VAs in a variety of population, but how should we analyze
data from a new population?

> Generalizability: given existing data, how to design VA algorithms that can be
robustly applied to unseen future study populations?

» We do not have the capacity to implement VA at large scale. Can we simplify the
data collection process?

» Scalability: given a pre-trained VA algorithm, can we simplify the data collection
process to enable more adoption of VA?
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Current methods for cause-of-death assignment
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» InterVA (Byass et al., 2012), NBC (Miasnikof et al., 2015), Tariff (Serina et al.,
2015): all relying on a fixed set of p(symp; | cause) from physician knowledge or
computed using reference deaths.

» InSilicoVA (McCormick et al., 2016): a fully Bayesian model based on the Naive
Bayes classifier, but accounting for parameter uncertainties.
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» InterVA (Byass et al., 2012), NBC (Miasnikof et al., 2015), Tariff (Serina et al.,
2015): all relying on a fixed set of p(symp; | cause) from physician knowledge or
computed using reference deaths.

» InSilicoVA (McCormick et al., 2016): a fully Bayesian model based on the Naive
Bayes classifier, but accounting for parameter uncertainties.

» Bayesian factor model (Kunihama et al., 2020) and FARVA (Moran et al., 2021):
further relaxes the conditional independence assumption.
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The challenge with domain adaptation

» When deploying the models to a new population, p(cause) and p(symp | cause)
can be both different from the training datasets. What do we do?
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The

challenge with domain adaptation

When deploying the models to a new population, p(cause) and p(symp | cause)
can be both different from the training datasets. What do we do?

Datta et al. (2021) and Fiksel et al. (2021) use a small number of labeled
validation data in the target population to correct the inference of population
cause-of-death distribution in a smart way.

When we have a diverse collection of reference deaths, can we leverage observed
heterogeneity of the data to improve out-of-domain prediction?

We are developing a class of new algorithms based on latent class representations
of symptom profiles in Li et al. (2021) and Wu et al. (2021).
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The latent class model approach: Li et al (2021)
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Validation results using the PHMRC data

» We take one site as the target and use the other five sites as training data.
Compare accuracy of the most likely cause assignment and CSMF accuracy:

C A
CSMF o () = 1 — 2ol

2(1—minc e) *

Top Cause Accuracy CSMF Accuracy

Mexico AP up Dar Bohol Pemba Mexico AP upP Dar Bohol

InsilicovA | 0.23 | 0.33 | 0.24 | 027 | 027 | 0.28 InsiicovA | 0.64 | 0.73 | 055 | 0.65 | 0.67

Bayesian Factor Model 0.23 0.37 0.33 0.32 Bayesian Factor Model 0.82 0.75 0.78

FARVA 0.32 0.4 0.34 0.32 FARVA 0.77 0.79 0.67 0.64

LCVA-M: domain-level mixture 0.27 0.36 0.33 0.33 LCVA-M: domain-level mixture 0.78 0.7 0.68 0.78
wall clock time (1,000 draws)
InSilicoVA (McCormick et al., 2016) 20 seconds
Bayesian Factor Model (Kunihama et al., 2020) 1.2 hours

FARVA (with one covariate) (Moran et al., 2021) 4.8 hours
Latent Class Model K = 10, training stage 2.3 minutes
Latent Class Model K = 10, classification stage 43 seconds
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Out-of-domain prediction with more extreme data shift

» What if we re-sample the held-out site to have more extreme distribution of
causes? Here we use the Bayesian factor model (Kunihama et al., 2020) as the
baseline and compare relative performances: (Acc — Accgr)/Accge.
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Several extensions

» Here we consider the scenario where we collect training data from multiple sites
and develop a robust prediction algorithm for 2 new site without labeled data

» When there are labeled data in the target domain, our model output can be further
calibrated to improve the estimation.

» We can also further account for site-level hierarchical structures (Wu et al., 2021).

» More broadly, we are extending these methods to infer subpopulation-specific
mortality fractions.
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Improving the data collection process

» Algorithm developments typically assume data have been collected. But can our
work inform us how to collect the data?
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Algorithm developments typically assume data have been collected. But can our
work inform us how to collect the data?

Asking 200 questions to someone who recently lost a family member can create a
lot of emotional burden.

Conducting a lengthy questionnaire in general makes it difficult to adopt VA in
low-resource settings.

Several attempts have been made in the past to identify questions that can be
removed from the instrument.

Yoshida et al. (2023) proposes a prototype dynamic survey instrument using a
pre-trained model and minimal computation on-the-fly.
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Improving the data collection process

» Algorithm developments typically assume data have been collected. But can our
work inform us how to collect the data?

» Asking 200 questions to someone who recently lost a family member can create a
lot of emotional burden.

» Conducting a lengthy questionnaire in general makes it difficult to adopt VA in
low-resource settings.

» Several attempts have been made in the past to identify questions that can be
removed from the instrument.

> Yoshida et al. (2023) proposes a prototype dynamic survey instrument using a
pre-trained model and minimal computation on-the-fly.

» As the survey is conducted, we estimate the cause of death after each question,
and pick the next question that is most likely to change our current guess.
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Cross validation results on the PHMRC data

» Suppose we run the adaptive questionnaire with a fixed number of questions on all
deaths.
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Cross validation results on the PHMRC data

> Alternatively, we consider adapting various early stopping criterion
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Wrap up
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Wrap up

» Advances and limitations in data collection should inform data analysis.
» Data analysis can help with more intelligent data collection.
» How should we analyze VA data from a new population?
» Use algorithms that are robust to domain shift.
» Collect labeled data to further calibrate the prevalence estimation.
» Can we simplify the data collection process?
» On average, only a small number of indicators are needed.
» But the number of questions needed depends on the underlying cause of death.
» Model-assisted data collection process may provide the ideal trade-off.

» Many more related open questions!
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Papers discussed

1. Li, Z. R.,, Wu, Z., Chen, I, & Clark, S. J. (2021). Bayesian nested latent class
models for cause-of-death assignment using verbal autopsies across multiple
domains. arXiv preprint arXiv:2112.12186. (soon to be updated)

2. Yoshida, T., Fan, T. S., McCormick, T., Wu, Z., & Li, Z. R. (2023). Bayesian
active questionnaire design for cause-of-death assignment using verbal autopsies.
arXiv preprint arXiv:2302.08099. Accepted at Conference on Health, Inference, and
Learning (CHIL) as oral presentation.

Thank you!
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Transportability assumption

All existing methods assume p(symptoms | cause) is known and is transportable from
one population to another. This is often violated in practice when methods are trained
in one population and deployed to another.

Drink alcohol Have trouble breathing

Proportion 'Yes'

1.00
0.75

0.50

0.25

0.00

Stroke -
Other NCD -
Pneumonia -
AIDS -
Maternal -
Renal Failure -
Other Cardiovascular Diseases -
Diabetes -
Acute Myocardial Infarction =
Cirrhosis =
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Latent class model for VA

» When data are collected from domains 1, ..., G, e.g., study sites, time periods, etc.
We assume heterogeneity induced by different mixing weights within CODs across

sites,
plyi = clgi = g) = n®
P(Zi =klyi=c,g = g) = )\E:i)

» Response probability conditioning on COD and latent class remains the same
across domains,

p(xi|zi = k,y = [ 051 = bag) ™7 T 72 (1 —~g) 9.
JEAK JEAK

» For target data from a new domain g = 0, we let the mixing weights of a new
domain represented by weighted average of the existing domains,

p(zi = klyi=c,g an k, 1 ~ Dirichlet(a,)).
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Out-of-domain prediction: absolute difference

» Compare with the Bayesian factor model (Kunihama et al., 2020) as the baseline
and compare relative performances in terms of the absolute difference.

Acc CSMFAcc
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Out-of-domain prediction: relative difference compared to InSilicoVA

» Compare with InSilicoVA as the baseline and compare relative performances in
terms of the percentage difference (removing outliers).

Percentage improvement from InSilicoVA

400%
350%
300% 4
250% 4
200% 4
150% 4
100% 4
50%
0% 1
-50%
—~100%
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Calibration CSMF with local labeled data

> When we also have local labeled data, we can us those labeled deaths in our model
directly, or calibrate model output using the approach of Fiksel et al. (2021). Here

we calibrate and evaluate the model output for causes aggregated into 5 broad
categories: infectious, non-communicable, circulatory, external, and maternal.

5 Cause Categories

Mexico City, Andhra Pradesh, Uttar Pradesh, Bohol, Dar es Salaam, Pemba Island,
Mexico i india Philippines Tanzania Tanzania
1.00
.
0.95 +
FEl-H-
f= - - _ - & .
0.90 H
.
0.85 .
_____ T I + L4 -1
O
B
0.80 °
.
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o5y eee -

InSilicovA LCVA

InSilicovA LCVA

InSilicovA LCVA

InSilicovA LCVA

InSilicovA LCVA

InSilicovA LCVA

With 30% labels

E3 nsilicovA, calibrated
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Calibration CSMF with 30% of local labeled data: original 34 causes

34 Cause Categories

0.94

0.84

0.7 4

0.6 1

0.5+

Mexico City,
Mexico

Andhra Pradesh,
India

Uttar Pradesh,
India

Bohol,
Philippines

Dar es Salaam,
Tanzania

Pemba Island,
Tanzania

0.4

T T
InSilicovA LCVA
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InSilicovA LCVA

T T
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Example of Pemba: symptom profiles p(x|z, y)

Other NCD Maternal
Female - Male -

No Injuries -

Light Drinker -

Died within Six Weeks of Childbirth -

Male -
Female -
No Injuries -

Light Drinker -

Heavy Drinker -

Drank Alcohol -

Used Tobacco =

Period Stop Menopause -

Sudden Loss of Consciousness -

Upper Belly pain -

Chest Pain =

Trouble Breathing Same in Al Positions -
Trouble Breathing -

Pale -

Significant Weight Loss =

Weight Loss -

Intermittent Fever =

Severe Fever -

Fever-

No Injuries -
Heavy Drinker -

Sudden Confusion -

Sudden Loss of Consciousness -

Upper Belly pain -

Change in Stool -

Chest Pain -

Fast Breathing -

Trouble Breathing Same in All Positions =
Trouble Breathing =

Swollen Ankle -

Pale -

Significant Weight Loss =

Weight Loss -

Tingling feet -

Intermittent Fever =

Severe Fever-
Diabetes -
Hypertension =

No Injuries -
Heavy Drinker -

Sudden Confusion -

Sudden Loss of Consciousness -

Upper Belly pain -

Difficulty Swallowing Liquids and Solids -
Chest Pain -

Fast Breathing -

Continuous Trouble Breathing -

Period Overdue at Time of Death -
Sudden Confusion -

Sudden Loss of Consciousness -
Rapid Onset Protruding Belly -
Upper Belly pain -

Lower Belly Pain -

Belly Pain - Trouble Breathing -
Chest Pain - Cough-

Trouble Breathing Same in All Positions - Pale -
Continuous Trouble Breathing - Significant Weight Loss -

Trouble Breathing - Weight Loss -

Swollen Ankle - Fever with Sweats -

Pale - Intermittent Fever -
Intermittent Fever - Severe Fever -
Severe Fever - Fever -

Diabetes
Male - Male -

Seli-inflicted Injury - Prolonged Survival after Injury -

Drowning = No Injuries =

Heavy Drinker - Fall-

Sudden Confusion - Heavy Drinker -

Sudden Loss of Consciousness - Drank Alcohol -

Rapid Onset Headaches - Sudden Confusion -

Rapid Onset Protruding Belly - Sudden Loss of Consciousness -

Upper Belly pain - Upper Belly pain -

Pain Anywhere - Difficulty Swallowing Liquids and Solids -

Chest Pain More than 24 Hours - Loose Stool -
Trouble Breathing Same in All Positions - Chest Pain -
Continuous Trouble Breathing - Increased Trouble Breathing Lying Down -
Significant Weight Loss - Continuous Trouble Breathing -

Rash Somewhere - Trouble Breathing -
Rash on Extermeties = Swollen Ankle -
Trunk Rash - Significant Weight Loss -
Continuous Fever - Severe Fever -
Severe Fever = Fever -

Pneumonia

Falls
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Example of Pemba: latent class distributions: p(z|y, g)

Other NCD Maternal Pneumonia
Mexico City, Mexico -
Andhra Pradesh, India -
Uttar Pradesh, India -
Dar es Salaam, Tanzania -
Bohol, Philippines -
Pemba Island, Tanzania -

Diabetes Drowning Falls

Mexico City, Mexico =
Andhra Pradesh, India -
Uttar Pradesh, India -
Dar es Salaam, Tanzania -
Bohol, Philippines -
Pemba Island, Tanzania -
' ' ' . ' ' ' i '
1 2 3 1 2 3 1 2 3

Mixing Weights [
0.00 0.25 0.50 0.75 1.00
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Example of Pemba: site similarity n
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Active questionnaire design: the selection metric

» For an alternative cause y and the j-th question, the Kullback-Leible (KL)
information of the question is

g;(x | 91)
Vly) = quxw, )log | —=1,

(x| y)
where g;j(x | y) = p(X; = x| Yi = y) and )A/,-(t) is the current guess of y;.

» We maximize the weighted score for each question j defined by

Score; = ZD TN n)p(Yi=y X :j € Si}).

» When a Bayesian model is used to estimate p(X, Y'), we can extend the above
score to the posterior predictive score to account for model uncertainty.

PScore; = /Scorej(¢)p(¢ | data)d¢
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