Potential impact of wild poliovirus 1 introduction into South Africa

Zinhle Mthombothi

&

SACEMA’s Modelling and Analysis Response Team

2023-05-22
Overview

• Background: Polio
• Motivation for the project
• Methods: Transmission model
• Results: Expected number of cases under different scenarios
• Limitations
• Conclusion & next steps

SACEMA’s Modelling and Analysis Response Team:
 Zinhle Mthombathi, Jeremy Bingham, Lauren Brown, Tumelo Sero, Cari van Schalkwyk, James Azam (former), Juliet Pulliam
Polio is highly contagious life-threatening viral disease

Cases due to wild poliovirus have decreased by over 99% since 1988

Detected in Southern Africa in the past 2 years

WPV1
WPV2
WPV3

Eradicated in 1999

Eradicated in 2020

WPV cases
• Pakistan
• Afghanistan
• Mozambique

cVDPV1 cases

cVDPV2 cases

Global WPV1 & cVDPV Cases\(^1\), Previous 12 Months\(^2\)

\(^1\) Excludes cases detected from environmental surveillance. \(^2\) Period of surveillance: 13 May 2022 to 02 May 2023

Cases are no longer detected from environmental samples.
Polio is spread through faecal-oral route

1 in 200 infections result in irreversible paralysis

Individuals who are not fully immunized are at risk

Polio is a vaccine-preventable disease

American Museum of Natural History.
https://www.amnh.org/explore/science-topics/disease-eradication/countdown-to-zero/polio
South Africa is at risk of a polio outbreak

1. Last case of polio in South Africa was reported in 1989
2. Low vaccination levels
3. Frequent travel between countries currently dealing with polio outbreaks
Approach

Examine potential magnitude of poliovirus outbreaks following introduction

- Age-structured compartmental model
- Initial focus on WPV1

Scenario analysis
- Reactive SIA (following detection of a single polio case)

Model outcomes
- Number of underlying and detected AFP cases, by scenario
Transmission model

Initial population divided into groups based on infection and vaccination history

- Humoral and mucosal immunity (fully protected)
- Humoral immunity only (protected from disease; able to transmit)
- Fully susceptible

Model will be run separately for each of South Africa’s 52 districts, based on district-level characterization of:

- Population age structure
- Age-structured immunity profile
Model structure

\[S_{(i)} \] Fully susceptible

\[V_{H(i)} \] Humoral immunity only

\[G_{(i)} \] Mucosal ("gut") and humoral immunity

Age classes are represented by \((i) \)
Model structure

$G(i)$

$S(i)$

$V_{H(i)}$

Green indicates that only exists with OPV SIA

Red compartments indicate counter variables

Stacked compartments represent box cars

Age classes are represented by i
Model structure

$S_{(i)}$ $E_{1(i)}$

$V_{H(i)}$ $G_{(i)}$

Age classes are represented by (i)
Model structure

\[G_i \]
\[E_{2(i)} \]
\[I_{2(i)} \]
\[V_{H(i)} \]

Stacked compartments represent box cars
Age classes are represented by \((i)\)
Model structure

\[S(i) \xrightarrow{\lambda(i)} E_2(i) \xrightarrow{\sigma} I_2(i) \xrightarrow{\gamma} G(i) \]

Stacked compartments represent box cars
Age classes are represented by \((i)\)
Model structure

\[G(i) \]

\[E(i) \]

\[I_2(i) \]

\[S(i) \]

\[V_{H(i)} \]

\[E_{H2(i)} \]

\[I_{H2(i)} \]

\[\lambda(i) \]

\[\sigma \]

\[\sigma_H \]

\[\gamma \]

\[\gamma_H \]

Stacked compartments represent box cars
Age classes are represented by \((i) \)
Model structure

$S(i)$ $\lambda(i)$ $E_2(i)$ σ $I_2(i)$ γ $G(i)$

$V_{H(i)}$ $\lambda_{H(i)}$ $E_{H2(i)}$ σ_H $I_{H2(i)}$ γ_H

Stacked compartments represent box cars
Age classes are represented by (i)
Model structure

Green indicates that only exists with OPV SIA
Red compartments indicate counter variables
Stacked compartments represent box cars
Age classes are represented by i

Mathematical equations:

- $G(i)$
- $S(i) \xrightarrow{\lambda(i)} E_2(i) \xrightarrow{\sigma} I_2(i) \xrightarrow{\gamma} G(i)$
- $V_H(i) \xrightarrow{\lambda_H(i)} E_H_2(i) \xrightarrow{\sigma_H} I_H_2(i) \xrightarrow{\gamma_H} G(i)$
- $D(i) \xrightarrow{d} A_2(i) \xrightarrow{\alpha} G(i)$

Red compartments indicate counter variables
Stacked compartments represent box cars
Age classes are represented by i
Model structure

Green indicates that only exists with SIA
Red compartments indicate counter variables
Stacked compartments represent box cars
Age classes are represented by \((i) \)
Model structure

Green indicates that only exists with SIA
Red compartments indicate counter variables
Stacked compartments represent box cars
Age classes are represented by \((i)\)
Model assumptions

- Polio is introduced through a single exposed individual at the beginning of the simulation.
- All reactive SIAs will use OPV. Reactive SIAs target 0-14 year olds.
- We are starting with a population that has a history of routine vaccination.
- Routine vaccination is not explicitly modeled due to the short time frame being considered.
- The only vaccination happening directly in the model is the SIA triggered by the detection of an AFP case.
Outbreak response vaccination

STANDARD OPERATING PROCEDURES
RESPONDING TO A POLIOVIRUS EVENT OR OUTBREAK

Version 4 | March 2022
Proposed scenarios

Reactive SIA vaccination scenarios* for implementation (WPV1)

Optimistic

- Up to 400,000
- 95% 95%
- Up to 200,000
- 75% 75%

Pessimistic

- 75%
- 75%

* All scenarios assume reactive vaccination is conducted with OPV and targeting under 15s
Johannesburg District: Detected cases across age groups

- Pessimistic
- No intervention
- Optimistic

Expected to be one the districts with the highest cases

Benefits of reactive SIA seen in the age groups with the most cases
Johannesburg District: Which age group is driving the transmission?
Namakwa District: Number of detected cases across age groups

- **Pessimistic**
- **No intervention**
- **Reactive SIA** will have minimal impact

Expected to be one of the districts with the lowest cases

Detected cases across all age groups for the different scenarios: [Graph Image]
Namakwa District: Which age group is driving the transmission?
Discussion and conclusion*

- The model suggests that the highest number of AFP cases would occur in the 15–19-year-old age group.
- The model suggests that transmission would be driven by 5-24 year olds.
- Together, these results suggest that reactive SIAs may be more effective if they target additional age groups.
- The model suggests that hundreds of AFP cases could be seen in populous districts (e.g., Johannesburg), even under the optimistic reactive SIA scenario.
- This finding suggests other interventions—such as a pre-emptive catch-up campaign—may be warranted.

* The results presented are preliminary; the model is still under development.
Limitations

- Deterministic model
 - No variation in the model output
 - Introductions always lead to an outbreak

- Some parameter values are preliminary
 - finalize the parameter values related to timing and intensity of OPV shedding

- Immunity estimates
Next steps

• Finalize implementation of the stochastic model

• Investigate the potential impact of including older age groups in the reactive SIAs

• Investigate the potential impact of pre-emptive catch-up campaigns

• Consider cost-effectiveness of the interventions investigated
Thank you!

Zinhle Mthombothi
zinhlem@sun.ac.za