A Framework to Assess Poliovirus Elimination from Clinical and Environmental Surveillance Data

Kath O’Reilly
Kathleen.oreilly@lshtm.ac.uk
Assoc Prof, LSHTM
23 May 2023, IDM Symposium
Background

• Polio modellers & other stakeholders focus where cases and ES\(^1\) detections are
 • Vaccine effectiveness & strategies to reduce transmission

• We will explore “the other side”...pathways to eradication

• How it works (endemic countries):\(^2\)
 • “Interruption of transmission”, ie no cases or ES detections for 3 years*
 • Data reviewed by certification committees: National, Regional, Global
 • Certification
 • Cessation process starts, ie. removal of OPV

\(^1\) Environmental surveillance \(^2\) GPEI Strategic Plan 2022-26 * Stated in 21\(^{st}\) GCC report
Where did the 3 years wait come from?

Modelling! “Eradication of poliomyelitis: when can one be sure that polio virus transmission has been terminated?”

“The case-free period must exceed 3 years before one can be 95% certain that there has been local extinction of the wild polio virus infection”

Further 21st century considerations:
• Perfect surveillance for cases was assumed, this might not reflect reality
• ES has likely improved surveillance for polioviruses
• Waiting 3 years provides no incentives to improve surveillance

Overview

• Empirical approaches to inform on time between cases

• Statistical model for estimating surveillance sensitivity and probability of elimination

• Informing policy
Empirical approaches

Previous WPV1 outbreaks (2000-2011)
- Outbreaks defined by viral genotype & cluster
- Fully observed
- N = 34, with 13 of size > 3 polio cases
- All have ‘tails’ and some have resurgence...
- If all cases in outbreak are $Y_1 \ldots Y_f$, what is the distribution of time between cases?
- Note: no ES during this time*

* Not much, and not included in this analysis
Empirical approaches

Previous WPV1 outbreaks (2000-2011)
- Outbreaks defined by viral genotype & cluster
- Fully observed
- N = 34, with 13 of size > 3 polio cases
- All have ‘tails’ and some have resurgence.
- If all cases in outbreak are \(Y_1 \ldots Y_f \), what is the distribution of time between cases?

Cluster “I1C4”
- N = 34, affecting YEM, CAF, CAE
- Longest wait, 197 days (median, 5 days)
Empirical approaches

Previous WPV1 outbreaks (2000-2011)
• Outbreaks defined by viral genotype & cluster
• Fully observed
• N = 34, with 13 of size > 3 polio cases
• All have ‘tails’ and some have resurgence.
• If all cases in outbreak are Y₁…Yₙ, what is the distribution of time between cases?

Cluster “I1C4”
• N = 34, affecting YEM, CAF, CAE
• Longest wait, **197 days** (median, 5 days)

All Clusters
• A lot of variability in how long is worth waiting...many influencing factors...
• Longest wait, **537 days**
• Also, Nigeria near elimination in 2016...Adamu et al. (2019) MMWR
Start with a positive null hypothesis:

\[H_0: \text{Poliovirus is present in the population above a pre-determined threshold (design prevalence)} \]

Aim of the analysis is to dis-prove this hypothesis, using evidence from data

The framework provides as outputs;
1. Surveillance sensitivity (for AFP and ES, at design prevalence)
2. Poliovirus transmission risk
3. Probability of being infection free, at time \(t \) after the last detection
4. Scenarios of surveillance and how this affects sensitivity & \(\text{Pr(} \text{infection free}) \)

See O’Reilly et al. (2020) Epidemiology and Infection DOI: 10.1017/S0950268820001004. for application of methods to UK polio surveillance
2. Surveillance Pathways

AFP and ES surveillance pathways are defined
- Each step has a probability of detection, estimated from data
- Sensitivity of each system is estimated

Account for variability in transmission risk
- Immunity
- Previous cases and ES detections
2a. AFP Surveillance

Sensitivity of detecting at least 1 infection from AFP surveillance is low (<1%)

- We know this, estimate largely here for comparison

Caveats in current analysis

- Have not (yet) included impact of district variability in AFP notification and stool data
- Impact of conflict not included, such as...
 - Increased poliovirus risk (reduction in immunity, increase in movement)
 - Reduced probability of AFP notification, stool samples

<table>
<thead>
<tr>
<th>SurveillanceNode</th>
<th>Estimates</th>
<th>Should this vary by district?</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFPCase (inf ratio)</td>
<td>190 (250-150)</td>
<td>No</td>
</tr>
<tr>
<td>AFPnotified</td>
<td>0.9 (0.6-0.999)</td>
<td>Yes</td>
</tr>
<tr>
<td>AFPStool</td>
<td>0.8 (0.5-0.95)</td>
<td>Yes</td>
</tr>
<tr>
<td>AFPTest</td>
<td>0.97 (0.95-0.999)</td>
<td>Yes</td>
</tr>
<tr>
<td>AFPSens</td>
<td>0.00315 (0.00173-0.00476)</td>
<td></td>
</tr>
</tbody>
</table>
Current ES data

- 150 ‘regular’ sites in Pakistan and Afghanistan

Data that informs the model

- Catchment sizes ($ESCatch$)
 - Catchment covered avg 58% (80% CI 1-100%) of the population based on watershed
 - Detection per mth was 47% (80% CI 1-72%) based on stats model

- Sampling frequency ($ESSample$)
 - monthly-fortnightly sampling
 - Fortnightly sampling $Pr(\text{capture}) \sim 99%$
 - Monthly $Pr(\text{capture}) \sim 46%$

<table>
<thead>
<tr>
<th>Surveillance Node</th>
<th>Estimates</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ESCatch$</td>
<td>0.58 (0.01-0.8)</td>
<td>Proportion in catchment</td>
</tr>
<tr>
<td>$ESSample$</td>
<td>0.99 (0.9-0.999)</td>
<td>$Pr(\text{shedder poop caught in ES samples})$ – effect of sampling frequency</td>
</tr>
<tr>
<td>$ESTest$</td>
<td>0.9 (0.7-0.99)</td>
<td>Virus load above LoD – effect of site factors</td>
</tr>
<tr>
<td>$ESSens$</td>
<td>0.491 (0.385 0.552)</td>
<td></td>
</tr>
</tbody>
</table>

Of districts with Environmental Surveillance...

Poliovirus risk

Circulation Risk Apr-2023
Last 6 months
Detection of Poliovirus Each Month

If poliovirus was present at least at 1 infection per 100,000 in 1 district, what is the probability that it would be detected?

Main Results

National sensitivity per month
- AFP alone 2% (95% 1-4%)
- AFP & ES 19% (95% 18-20%)

Sensitivity varies across districts
- Varying circulation risk
- Presence / absence ES
3. Probability of being infection free

No detections from Mar 2023 onwards – how long should we wait?

Using a prior chance ~50% of being infection free, each month is updated using the fact that surveillance has happened and nothing is detected

Main results

AFP Surveillance
- Not very informative (national sensitivity ~2%)

AFP & ES Surveillance
- $\Pr(\text{infection free})$ improves in time, with good confidence at 2 years. (national sensitivity ~19%)

Caveats

The Prior value of being infection free has a big effect on the result, but is not known
- Could use *Expert Elicitation* to inform prior
Question posed by GCC\(^1\) in July 2021, "**does global certification of WPV\(1\) eradication require a full three years?**"

Presented to GCC in March 2022
- IDM and Kid Risk also presented modelling: different models but similar conclusion
- Alongside review of surveillance tools (genomics, ES)

GCC meeting in July 2022\(^2\)
- "GCC is recommending the adoption of a ‘flexible’ approach to certification"

\(^1\) GCC - Global Certification Committee
\(^2\) https://polioeradication.org/news-post/gcc-reviews-global-certification-criteria/
Discussion

• The *infection free* framework is a tool that estimates the sensitivity of detecting poliovirus
 • Also important for cVDPV2 analysis
 • Potential for use in other diseases approaching elimination
• Confidence in elimination can be improved with more information
 – Target more high risk districts
 – Sensitivity of detection can also reduce (emph high quality ES sites)

• This work is on-going...
 – Precise values of sensitivity shouldn’t be taken literally
 – Relative values should be informative, eg. AFP vs. AFP and ES combined, ES sampling options
 – Aiming to improve methods & analysis,
 • “Quality” metrics for ES sites, catchment area analysis, impact of conflict and population mobility
Thank you for listening!

LSHTM colleagues:
W John Edmunds, Megan Auzenbergs, Paul Fine, Neil Pearce, Emily Nightingale
Members of CMMID

IDM & BMGF:
Hil Lyons, Arie Voorman, Corey Peak, Rachel Burke

GPEI stakeholders and group members:
Country partners, GCC members, modellers within the SAM
Options to improve WPV detection...

1. **Improve AFP sensitivity** (eg. increase stool adequacy, etc)
 - Limited impact because of infection:case ratio
 - Could improve to **4% (95% 3-5%) at most**

2. **Increase ES sampling from fortnightly to weekly**
 - Limited impact
 - Fortnightly is likely sufficient due to shedding profile
 - Exception is ‘catching’ shedders from other districts

3. **Increase number of ES sites in high risk districts (from ~90 in 2022)**
 - + 20 sites, sensitivity 31% (95% 30-32%)
 - + 40 sites, sensitivity 37% (95% 35-38%)
 - **Results in a rapid improvement in confidence to within 1 year**
 - **A practical challenge?**
For risk-based surveillance, we want to have better surveillance in places with higher risk.

Transmission risk calculated as:

\[
Risk(i) = 1 - Imm(i) \sum_j Case(j) \cdot Rad(ij)
\]

White squares indicate ES sites returning (WPV) negative samples.