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The pneumococcal conjugate vaccines (PCVs)

• Streptococcus pneumoniae causes pneumonia and invasive diseases
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The pneumococcal conjugate vaccines (PCVs)

• Streptococcus pneumoniae causes pneumonia and invasive diseases
• PCVs cover up to 20 out of 100 serotypes1

• Serotype replacement may erode vaccine impact

1. Ganaie et al. (2020) mBio



The challenges in estimating PCV impact

• Population impact: direct effect + indirect effect1

Fully unvaccinated

1. Halloran et al. Design and Analysis of Vaccine Studies. New York: Springer US; 2010.
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The challenges in estimating PCV impact

• Population impact: direct effect + indirect effect1

• Indirect effect cannot be easily estimated in RCTs

• Vaccine impact can be estimated from observational studies
• But confounding bias may occur

- overestimation: improved living condition and infection prevention
- underestimation: increased surveillance and diagnosis

1. Halloran et al. Design and Analysis of Vaccine Studies. New York: Springer US; 2010.



How to estimate vaccine impact?

Counterfactual cases

Observed cases

PCV introduced

Defined evaluation period



How to estimate vaccine impact?

Counterfactual cases

Observed cases

𝐼𝑅𝑅 =
𝑠𝑢𝑚(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

𝑠𝑢𝑚(𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑡𝑢𝑎𝑙)

PCV introduced

Defined evaluation period

𝐼𝑅𝑅 = 0.8 20% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛



How to predict counterfactual outcome?
Rely on outcome of interest Synthetic control

Interrupted Time Series 
(ITS) ITS + offset Hand-picked:

Select unaffected controls1
Data-driven:

Bayesian variable selection2

Image: Bernal et al. (2018) Int I EpidemiolImage: Bernal et al. (2017) Int I Epidemiol

1. Thorrington et al. (2018) BMC Medicine
2. Bruhn et al. (2017) PNAS
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Simulate data
Test methods 
on simulated 

data

IRR estimate

Simulation no.

True IRR

Study design



We simulated outcome based on real data



We estimated IRR in each simulated data set
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Take-home messages

• Nice features of LASSO method
• Accurate estimation
• Interpretable models
• Easy to implement (pkg “glmnet”1)
• Can reducing confounding 

1. Friedman J, Hastie T, Tibshirani R, et al. glmnet: Lasso and Elastic-Net Regularized 
Generalized Linear Models. https://cran.r-project.org/web/packages/glmnet/index.html.
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Q & A



• Draw 5 controls & assign beta (x5)
• Draw 10 controls & assign beta (x5)
• 10% binomial subsample from 1st set (x1)
*Eliminate if annual max:min ratio > 10 (unrealistic)

We simulated outcome based on real data



Sensitivity test
• Instead of a null-impact vaccine, we tested a vaccine with VE=10%


