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What do we already know?  
Since April 2020, we have been using compartmental transmission modeling approaches to better 
understand COVID-19 epidemiology in Washington state. Using models as a platform, we align 
observed cases, hospitalizations, and mortality into a consistent epidemiology, allowing us to 
describe the underlying transmission dynamics in terms of population prevalence, cumulative 
incidence, and effective reproductive numbers. Recently, we have extended this approach to jointly 
estimate weekly prevalence across 15 regions in Washington state.  
 

What does this report add?   
In this report, we build intuitive heuristics for estimating COVID-19 prevalence using more readily 
available data than that needed to model transmission dynamics. Specifically, we show how test 
positivity, cases per capita, and testing volume straightforwardly relate to underlying infection rates 
via case detection rates, hidden quantities of public health interest that generally need to be 
estimated with more data intensive transmission-model-based inference.  
 

We use data and estimates from Washington state’s regions to show that there are generalizable 
relationships among these quantities that can be used to build a simple mapping between easily 
observed metrics, such as test positivity and cases per capita, and unobservable measures of 
transmission risk and burden. We develop a simple, practical, and interpretable prevalence 
approximation tool and also build intuition for its potential adjustment to adapt to specific local 
contexts. We tested the simple tool on observed data from all 50 US states, showing high accuracy.  
 

What are the implications for public health practice?   
Epidemiological variables, such as prevalence, are not directly observed and typically require complex 
modeling or well-designed surveillance systems to estimate, neither of which are often available. Test 
positivity and cases per capita are accessible metrics reported by local health departments in near 
real-time.  We identify four multipliers that can be easily applied to readily available metrics to 
quickly estimate prevalence. For example, if testing is widespread such that over 1% of the 
population is being tested each week and nothing else is known about case detection rate, then 
prevalence can be roughly approximated by multiplying cases per 100,000 in the past seven days by 
0.003.  

https://covid.idmod.org/data/Towards_robust_real_time_high_resolution_COVID_19_prevalence_and_incidence_estimation.pdf
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Executive summary 

● This report describes an interpretable heuristic that allows you to roughly estimate COVID-19 
prevalence using the readily available metrics of test positivity and cases per 100,000. This is a 
highly simplified tool and only meant for rough approximations and to aid in interpretation. This 
should not serve as a replacement for more detailed modeling of COVID-19 transmission, if such 
modeling is available.  

● The relationships between prevalence and test positivity and between prevalence and cases per 
capita are mathematically straightforward, but depend on case detection ratio 
(cases/infections), which is also unobserved: 

○ Prevalence = test positivity * testing volume / case detection ratio  
○ Prevalence = cases per capita / case detection ratio  

● We have found that these relationships tend to follow expected patterns. In particular, case 
detection rates stabilize to approximately one detected case representing three infections 
above a certain level of testing. For example, if a location has had good testing, and found 200 
cases in the past week, we would estimate that there have been about 200*3=600 active 
infections in the past week.  

● Thus, we are able to suggest the following simple rules which use test positivity and cases per 
capita to approximate prevalence: 

○ If 1% or more of the population is being tested each week (this is the situation in nearly 
all places today): 

■ Current prevalence is approximately test positivity times 0.048.  
■ Current prevalence is approximately cases per 100,000 times 0.003. 

● Alternatively, the number of total infections over the past week is cases 
multiplied by 3. 

○ If less than 1% of the population is being tested each week: 
■ Current prevalence is approximately test positivity times 0.031.  
■ Current prevalence is approximately cases per 100,000 divided by 0.0043. 

○ If testing volume is lower than 0.6% of the population (6 per 1000), the above rule will 
yield unstable estimates, and is not recommended for use. 

● This ruleset is based on average observed relationships in Washington state. It is only for 
approximation, but it can be adjusted easily for specific settings if there is strong belief that the 
average case detection rate differs significantly from the Washington average. For example, if 
testing is very high, or the contact-tracing effort is known to be effective, case detection ratio 
will be better than 3. In Washington, for example, we find the case:infection multiplier when 
testing is >1.8% is closer to 2.3.  

● Testing of this tool outside of Washington indicates that the relationships are broadly 
generalizable, and thus can be used in other locations in the US. It was not tested outside the 
US, but could be used in locations where case detection rates are expected to be similar.  
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● This tool can reduce latency in situational awareness arising from lag-time time in reporting 
total tests, deaths, and hospitalizations, as at minimum it only requires cases, which are often 
reported in near real-time. 

 
Introduction  
Aggregated results of population testing are commonly used to inform policy-makers and the public 
about the local COVID-19 epidemiological situation. Moreover, metrics such as test positivity (positive 
tests over total tests) and cases per capita are also used in decision-making around public health control 
measures. For example, New York City used the ‘3% rule’ as a decision threshold for closing schools, and 
the recently announced ‘Healthy Washington - Roadmap to Recovery’ reopening plan uses a test 
positivity threshold of 10% as part of the criteria to advance phases.  
 
There are many such examples to point to, but generally these metrics are being used as readily 
available stand-ins for population prevalence, the proportion of the population currently infected with 
COVID-19, which fundamentally describes community risk and can forewarn possible surges to the 
healthcare system. Underlying prevalence cannot be measured directly, and requires either complex, 
data-intensive transmission modeling or large-scale population-based surveillance systems to accurately 
estimate.  
 
In this report, we use outputs from our transmission model across 15 regions in Washington to better 
understand the relationship between two readily available metrics, test positivity and cases per capita, 
and COVID-19 prevalence. The link between these metrics and prevalence is the case detection rate, the 
fraction of infections that eventually test positive and get reported to the health system, another 
underlying epidemiological quantity that cannot be measured directly. We find that once testing has 
exceeded roughly 1% of the population per week, case detection rates stabilize, and accessible metrics 
become highly predictive of underlying prevalence. Testing is now above this level for most Washington 
regions and most US states. Along those lines, we show how assumptions about the case detection rate 
based on observations in Washington can be extrapolated to predict state-level mortality across the US.  
 

Key inputs and assumptions 
● We use COVID-19 testing and case data collected by the Washington Department of Health (WA 

DoH) through the Washington Disease Reporting System (WDRS). Data are aggregated into time 
series by specimen collection date. We limit this analysis to data collected between May 1, 2020 
and November 22, 2020. Before May, testing capacity and utilization were limited in ways 
specific to the start of the epidemic and are not generalizable to today’s situation. Starting in 
late November, WA DoH temporarily stopped reporting all negative test results—impacting 
estimates of test positivity and testing volume.  

● Weekly prevalence and reporting rate were estimated via the COVID-19 transmission model 
described in our previous report. Briefly, we fit a compartmental model to testing, 
hospitalization, mortality, and age-distribution data at the state level to estimate daily infections 
in Washington as a whole. Those infections are then distributed across 15 geographic regions to 

https://www.nytimes.com/2020/11/23/podcasts/the-daily/new-york-city-school-reopening.html
https://medium.com/wagovernor/inslee-announces-healthy-washington-roadmap-to-recovery-229b880a6859
https://covid.idmod.org/data/Towards_robust_real_time_high_resolution_COVID_19_prevalence_and_incidence_estimation.pdf
https://covid.idmod.org/data/Towards_robust_real_time_high_resolution_COVID_19_prevalence_and_incidence_estimation.pdf
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best explain weekly trends in region-specific hospital admissions. Critically, region-specific 
testing data is not used for model fitting, facilitating the comparisons and inferences presented 
in this report. We used median posterior estimates from the model.  

● As inferences in this report are based on our transmission model, assumptions from our 
modeling report are relevant here as well. In particular, a key underlying assumption for our 
model is that population prevalence varies continuously in time. This necessarily creates 
difficult-to-quantify spatial resolution limitations that apply to our heuristic approach. Our 
analysis was developed and tested on regions with a population size 100,000 or larger. We 
expect this approach to work at smaller areas - such at the city scale, but expect it to break 
down at very small areas.  

● Weekly epidemiological estimates are produced for each of the 15 regions defined in our 
previous report, and merged with each region’s weekly case counts, test positivity, and testing 
volume data from the WDRS. In total, the compiled dataset includes 30 weeks, or 450 region-
weeks.  

● US state-level data on total tests, cases, and deaths were sourced from the Covid Tracking 
Project and downloaded here. 

● Population estimates for Washington regions and US states were obtained from the US Census 
Bureau.  

● The following terms are used throughout this report. Unless otherwise stated, all are expressed 
on a weekly time-scale: 

○ Prevalence: proportion of the population infected with COVID-19 at PCR-detectable 
levels. We assume PCR-detection lasts for 12 days directly following a 2-day latent 
period starting at the time of exposure. Typically expressed as percentage. Model-based 
estimate. 

○ Reporting rate: cases detected per infection. Also sometimes referred to as case-
detection rate. Note that the denominator is PCR-detectable infections per week, and 
thus this is not directly interpretable as the proportion of cases that are detected unless 
adjusted for duration (assumed 12 days). Typically expressed as a percentage. Model-
based estimate. 

○ Test positivity: the proportion of tests returning a positive result. Typically expressed as 
a percentage. Directly observed. 

○ Testing volume: tests per population. Typically expressed as tests per 1000. Directly 
observed. 

○ Cases per capita: cases per population. Typically expressed as cases per 100,000 or per 
100. Directly observed.  

 

Building intuition for the relationship between prevalence and key metrics 
It’s useful to start by defining the mathematical relationships among the above variables. Specifically, 
we see that 

, 

https://covidtracking.com/
https://covidtracking.com/
https://github.com/youyanggu/covid19_projections/blob/master/infection_estimates/latest_all_estimates_states.csv
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or in other words,  

, 
 

Thus, the relationship between test positivity and prevalence is modified by testing volume and 
reporting rate. Furthermore, by rearranging the above, we also see that  
 

, 
an even simpler relationship that does not  depend on testing volume.  
 
We can use estimates from our transmission model and data on testing to explore how these metrics 
tend to covary in practice. Figure 1 shows the pairwise relationships among each of the five metrics 
(prevalence, test positivity, cases per capita, testing volume, and reporting rate), as observed across the 
450 region-weeks in Washington. Test positivity and cases per capita are highly correlated with 
prevalence (Pearson correlation coefficient: 0.90 and 0.91, respectively), with the remaining variation 
explained by reporting rate and testing volume. Test volume and reporting rate are also shown to be 
well correlated (0.65), which indicates that testing volume may serve as a proxy for the unobservable 
reporting rate, as we would expect intuitively.  
 
From the equations above, we can see that understanding the variation due to reporting rate is critical 
for developing and interpreting a generalizable heuristic that maps between observable metrics (test 
positivity and cases per capita) and prevalence. If reporting rate varies unpredictably, then we would 
expect a highly variable relationship between the observable metrics and prevalence. As implied in 
Figure 1, this is unlikely the case, as the two observable metrics of interest and prevalence are well-
correlated on their own. Despite this, some variation remains, warranting a deeper investigation of 
reporting rates.  
 



6 

 
 

Figure 1: Relationships between observed and estimated epidemiological metrics across 450 region-weeks in Washington state.  

 
Figure 2 shows the relationship between infections per case (the inverse of reporting rate) and testing 
volume. As testing volume increases, so do the proportion of infections caught by the testing system: 
the average weekly infections per case drops from 14 at a level of 4 or fewer tests per 1000 to about 2.5 
at a level of 18 or more tests per 1000, with average gains in reporting rates slowing at about 10 tests 
per 1000. Furthermore, variation in reporting rates is much higher when testing is below 10 per 1000. As 
shown in Figure 3, this improvement has happened gradually over time in Washington, with the highest 
testing volume, highest reporting rates, and lowest variation in reporting rates observed in November, 
at the end of the time period considered in this report. As such, we expect observable metrics to be 
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more closely tied to prevalence when testing is better, and in Washington’s case, for this to have been 
improving over time.  
 
Figure 4 shows how test positivity and cases per capita respectively relate to prevalence across strata of 
testing volume. Within each strata, we fit a linear regression with no intercept, and report the slope (𝛽𝛽) 
and explained variation (𝑅𝑅2). We find that linear models fit well within each strata (minimum 𝑅𝑅2are 0.84 
and 0.82, for test positivity and cases per capita, respectively). This confirms that indeed test volume 
serves well as a proxy for reporting rate. Furthermore, we see that 𝑅𝑅2tends to improve as testing 
volume increases, which is due to narrowing variation in reporting rates as testing improves. The 
regression slopes represent the modification of each metric within each strata needed to estimate 
prevalence. For cases per capita, the slope very simply represents the average of the inverse of 
reporting rate (𝑅𝑅𝑅𝑅−1= infections per cases) within each strata. For test positivity, the slope represents 
testing volume per capita / reporting rate. Since reporting rate increases sublinearly with respect to 
testing volume (Figure 2), the fitted slopes for test positivity increases with increasing testing volume. 
Both for test positivity and cases per capita, slopes tend to level out above about 10 tests per 1000.  
 

 
Figure 2: The relationship between reporting rate and testing volume. Black lines represent mean values at each level of testing 
volume. Inset shows the distribution of inverse reporting rate at each level of testing volume.  
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Figure 3: Changing testing volume and reporting rates over time in Washington. Testing volume has increased and reporting 
rate has improved over time. Regions with testing volume under 10 per 1000 in November were Clark, North Central, South 
Central, and South West. Variation in reporting rate has also reduced over time (note that the x-axis is on a log10 scale).  

 
 

 
Figure 4: Showing the relationship between observable metrics (test positivity and cases per capita) across bands of testing 

volume (per 1000). Lines show individual linear regressions, fitted with no intercept, and annotated with values for slope (𝛽𝛽) and 
proportion of variation explained (𝑅𝑅2).  

 

A simple tool for interpreting test positivity and cases per capita 
Our aim is to develop a predictive model that can be used as a heuristic tool by those interested in 
inferring underlying epidemiology from readily observable metrics. This effort is enabled by the strong 
relationships between the two observable metrics, test positivity and cases per capita, and prevalence, 
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and the stable relationship between testing volume and reporting rate. For both metrics, the needed 
heuristic will only require a modifying multiplier which depends on level of testing (serving a proxy for 
reporting rate). One can imagine developing models in this spirit at various levels of complexity, for 
example, a similar approach, which assumes reporting rate improves over time, is being used to 
estimate infections in US counties. For our purposes, we wish to distill the intuition described above into 
a simple, practical, and predictive tool which can be used and understood by users at varying levels of 
expertise, and calculated easily by hand.  
 
For both test positivity and cases per capita, we tested two regression models: one that allowed for the 
metric to be modified at finer levels of test volume (as shown in Figure 4), and a simpler one that only 
allowed for two multipliers, dichotomized at 10 tests per 1000. We found that the loss in 𝑅𝑅2by moving 
to the simpler model was minimal: a reduction of 0.006 for percent positive, and 0.033 for cases per 
capita, and thus proceeded with the simpler model. Table 1 describes the heuristic tool derived from 
these regressions, with different multiplicative factors for ‘high’ or ‘low’ testing. In Washington, 
population testing is currently widespread (Figure 3), and most regions are generally in the ‘high testing’ 
category. As such, we can simplify the heuristic further into the following statements:  
 

● Prevalence is approximately test positivity multiplied by 0.048.  
● Prevalence is approximately weekly cases per 100,000  multiplied by 0.003 

○ Alternatively, the number of total infections over the past week is cases multiplied by 3. 
 
For example, if a location has had good testing, and found 200 cases in the past week, we would 
estimate that there have been 200*3=600 active infections in the past week. This is based on the 
assumption that one case represents about three infections. 
 
Table 1: Heuristic tool for converting test positivity and cases per capita to prevalence. Each cell shows the multiplicative factor 
to use where testing is assumed/known to be either ‘high’ or ‘low’.  

Testing level Test positivity multiplier (%) Cases per 100k multiplier 

Low, <10 per 1000 0.031 0.0043 

High, >10 per 1000 0.048 0.003 

 

 
The application of these simple multipliers to test positivity and cases per capita among region-weeks in 
Washington explain 94% and 91% of the variation in prevalence, respectively, as shown in Figure 5. 
While this represents excellent performance from such a simple model, we have traded some accuracy 
for simplicity, and thus it is important also to understand where such an approach tends to fail. 
Remaining unexplained variation in our heuristic-based estimates come from main two sources: 
variation in reporting rates and misspecification of average assumed reporting rates. Fortunately, these 
sources of variation are somewhat structured and thus predictable.  
 

https://covid19-projections.com/estimating-true-infections-revisited/
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Figure 5: Comparison of prevalence as estimated from the disease transmission model, to prevalence estimated from the simple 
heuristic described in Table 1. 𝑅𝑅2for test positivity = 0.94, and 𝑅𝑅2for cases per capita = 0.91.  
 

Figure 6: Relative errors for each region-week in Washington State for the heuristic model derived from test positivity. Relative 
errors are shown as the ratio of the heuristic prevalence estimate and the transmission model prevalence estimate. The black 
line at 1 represents no error, the dark grey line at 0.75 and 1.33 represent an error on magnitude of ⅓ the prevalence and the 
light grey lines represent an error on magnitude of ½ (or two-fold) the prevalence. 60% of region-weeks fell within the ⅓ relative 
error band, and 93% of region-weeks fell within the two-fold band. Region-weeks outside the two-fold band are represented 
with an X. The color represents the testing volume in that region-week. Larger relative errors are more common when testing is 
lower, coinciding with greater variation in reporting rates.  
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We illustrate this in Figure 6, which shows the relative differences between the ‘gold standard’ 
transmission model-based prevalence estimates and the heuristic-based estimates across each region-
week (note, for conciseness we only show the test positivity-based heuristic, but results for cases per 
capita are similar). Overall, large relative errors on the magnitude of two-fold (<0.5x and >2x) occur in 
7% (33 out of 450) of region-weeks. Of those, 28 (85%), are region-weeks where testing volume was 
lower than 10 per 1000, mostly from spring and summer. As such, we expect such a heuristic to yield 
less reliable results when testing is low, due to higher variability in reporting rate at those levels. 
Furthermore, we see that certain regions, such as north King County have a bias toward lower 
prevalence in the heuristic-based estimate. This is a result of misspecification of the assumed reporting 
rate, as the heuristic is based on averages while testing volumes and reporting rates in north King 
County have consistently outperformed the rest of the state. A more appropriate high-testing multiplier 
for north King County would be closer to 0.063, since average weekly testing volume is about 20 per 
100,000 and average reporting rate is 33%.  
 
The north King County example emphasizes the point that the specific numbers in Table 1 are derived 
from mean relationships observed in Washington. Table 1 is a quick and practical tool, but it is also 
interpretable and thus should also serve as a starting point to be improved based on local knowledge. 
The test positivity multiplier is the average test volume divided by reporting rate, and could be adjusted 
up or down if testing improves or degrades, respectively. The case per capita multiplier is simply the 
inverse of the reporting rate (infections per cases), so if one has a strong belief that the reporting rate 
has improved (if, for example, improved contact tracing or population coverage of testing had been 
implemented), the multiplier can be adjusted upwards. Furthemore, if testing volume is low and/or 
erratic (particularly under 6 tests per 1000), reporting rates become unpredictable, and such heuristics 
should be used with strong caution or avoided altogether.  
 
Despite the above caveats, it remains instructive to explore the validity of applying the empirically-based 
heuristic tool in Table 1 outside of Washington state, in order to understand how generalizable we 
expect the relationships observed in Washington to be. To do so, we used reported cases per capita 
from the Covid Tracking Project to estimate weekly COVID-19 prevalence for each US state, starting July 
1, 2020. Since prevalence is not directly observable, we based our comparison on reported deaths from 
COVID-19 in each state-week. To estimate deaths we used age-dependent infection fatality ratio (IFR) 
estimates published by CDC and state-specific age pyramids to make state-specific IFRs, and applied 
these to three-week lagged estimates of new exposures (derived from week-to-week changes in our 
heuristic-based prevalence estimates). Figure 7 compares observed and estimated deaths from 1100 
state-weeks from all 50 states between July and end of November 2020. Population normalized  𝑅𝑅2is 
0.87, with a median weekly error of 3.9 deaths, which implies that the relationship between cases per 
capita and underlying infections observed throughout Washington are broadly generalizable across the 
US. Test positivity was less predictive than cases per capita, with 𝑅𝑅2is 0.58, with a median weekly error 
of 13.5 deaths, this is likely due to inconsistency in test positivity reporting across states due to differing 
definitions and reporting quality of negative tests.  
 

https://covidtracking.com/
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
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Figure 7: Comparison across all 50 US states of reported deaths versus the cases per capita heuristic-based estimates of deaths, 
derived from average reporting rates in Washington state.  

 
 

Conclusions 
Test positivity and cases per capita are readily accessible metrics which have been publicly reported in 
near real time throughout the COVID-19 epidemic in the US. In this report, facilitated by data-intensive 
transmission-model-based estimates of prevalence in Washington, we confirmed that these metrics can 
be used on their own as predictive signals of the underlying epidemiology.  
 
We discovered that above a certain level of testing volume (about 6 per 1000), the reporting rate tends 
to remain relatively stable. This stability translates into a predictable relationship between the 
observable metrics and underlying population prevalence. We distilled this relationship down into a 
simple rule-based heuristic derived from average reporting rates observed in Washington state. 
Critically, the straightforward interpretability of the tool lends itself to be adjusted for local contexts, 
where stronger priors on reporting rate could be applied to make more accurate estimates. That said, 
however, even the parameters obtained from Washington’s data performed well when applied to all 50 
states.  
 
From our observations, we believe that cases per capita is a preferred metric over test positivity. Test 
positivity depends on consistent reporting of total tests, which has a history of changing erratically and 
is differentially reported across states, and that reporting on the number of negative tests tends to lag 
over more timely reporting of cases. Furthermore, about 8% of negative tests are not associated with a 
region in Washington, inflating test positivity. Within our self-consistent sample of Washington region-
weeks, cases per capita and test positivity performed about equally, and cases per capita performed 

https://www.seattletimes.com/seattle-news/health/washington-state-doh-faces-backlog-of-test-results-not-yet-included-in-coronavirus-case-counts/
https://covidtracking.com/about-data/faq#why-dont-you-report-test-positivity-rates
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better at predicting deaths across US states. Furthermore, the relationship between cases per capita and 
prevalence is extremely intuitive: prevalence is cases per capita divided by reporting rate.   
 
Reflecting for a moment as professional infectious disease modelers: One key learning for us from this 
pandemic has been the value of easily communicated, widely usable tools for interpreting data as it’s 
being reported, not just for the general public but for policy-makers, scientists, and health officials as 
well. Transmission models offer valuable insight, but they generally don’t fill this need, particularly in 
settings where certain data (like COVID-19 mortality and hospitalization) are difficult to collect and 
report. The approach here, using a transmission model as a platform for developing more easily 
generalizable tools, leverages our knowledge in settings where we have large amounts of information 
and context towards the goal of understanding situations where we have significantly less of both. As 
we continue to work towards that end, we hope tools like these can help people better understand 
COVID-19 in their own local context. 
 


