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What do we already know?
Since April, we have been using compartmental transmission modeling approaches to
better understand COVID-19 epidemiology in Washington. These approaches have helped
us align observed cases, hospitalizations, and mortality to support public health decision-
making, estimate effective reproductive numbers, and quantify disease burden in terms
of population prevalence and cumulative incidence. Generally speaking, our estimates
have been limited to relatively populous regions of Washington, like King County or the
eastern and western halves of the state.

What does this report add?
Heterogeneity among sub-populations within these large regions has been a prominent
feature of Washington’s COVID-19 epidemiology. Better quantifying and understanding
COVID-19 dynamics within and between these sub-populations is therefore a critical next
step for model-supported situational awareness.

This report presents progress towards that end. Specifically, we describe a new method
that works in concert with our transmission model to jointly estimate weekly COVID-19
prevalence and incidence in 15 geographic sub-regions and in 5 age groups within Wash-
ington. This is the highest resolution and most comprehensive burden estimation we have
published to date. Moreover, in constructing these estimates, we show that Washing-
ton’s three COVID-19 waves have had distinct characters, getting more geographically
widespread over time and moving from the oldest and youngest age groups into a more
representative age distribution. Finally, our burden estimates put us in a position to assess
test positivity as a metric for COVID-19 activity, which we show is highly correlated to
underlying prevalence across Washington.

What are the implications for public health practice?
Constructing targeted and equitable interventions for a diverse population is a fundamental
problem in public health, and accurately quantifying heterogeneity in disease burden is
a critical part of this broader public health goal. The method presented in this report
is step toward high resolution (in time and in sub-population size), robust COVID-19
burden estimation that can be used regularly to support situational awareness and decision
making during this pandemic.

1 Introduction
Interpreting data as we get it has been a persistent challenge throughout the pandemic. Ideally, we
want to know who currently has COVID-19 and who those people are passing their infections onto. Said
differently, in epidemiological terms, we want estimates of population prevalence and corresponding
effective reproductive numbers to construct a more complete picture of risk. Answering these questions in
as much detail as possible helps us better deliver care to those who need it without interrupting the lives
of those who don’t.

Our transmission modeling approaches offer coarse answers to these questions in part because they’re
restricted to considering relatively large populations. This is partially a data sparsity issue since small
populations have lower numbers of cases, hospitalizations, and deaths to facilitate inference, but it is
also a fundamental issue of model construction. More concretely, simple transmission models generally
consider populations in isolation, and as population sizes of interest get smaller, their connections to

1

mailto:covid@idmod.org
https://covid.idmod.org/data/Sustained_reductions_in_transmission_have_led_to_declining_COVID_19_prevalence_in_King_County_WA.pdf
https://covid.idmod.org/data/COVID-19-transmission-likely-rising-through-April22-across-Washington-State.pdf
https://covid.idmod.org/data/WA_Situation_Report_21_COVID-19_transmission_across_Washington_State.pdf
https://covid.idmod.org/data/WA_Situation_Report_21_COVID-19_transmission_across_Washington_State.pdf
https://covid.idmod.org/data/Comparing_COVID-19_dynamics_in_King_and_Yakima_counties.pdf
https://covid.idmod.org/data/Inequities_in_COVID-19_dynamics.pdf
https://covid.idmod.org/data/Inequities_in_COVID-19_dynamics.pdf


other populations become more and more significant. Detailed transmission models that consider these
connections are notoriously difficult to fit to data since we rarely observe who a person got their infection
from. As a result, if our goal is real-time situational awareness, we need more robust approaches.

In this report, we present an intuitive approach to this problem that avoids assumptions about
group-to-group connections. Essentially, we leverage the transmission models we’ve used in the past
to estimate the total number of infections over time in a large region. Then, breaking that region into
grouped sub-populations, we allocate infections to each group in proportion to the number of severe
outcomes we’ve observed in that group, taking care to ensure consistency with the overall transmission
model at all times. Given well-defined groups to which severe infections can be assigned, we find that
this approach can jointly estimate disease burden and uncertainty in seconds on a laptop.

We demonstrate the utility of this approach by estimating weekly COVID-19 prevalence and incidence
in 15 spatial regions within Washington — the most comprehensive burden estimation we have published
to date — and in 5 state-wide age groups. With these estimates, we show that each of Washington’s three
COVID-19 waves has had a distinct character and has become less geographically localized over time.
The geographic estimates in particular give us a platform for contextualizing more accessible metrics of
COVID-19 activity. To that end, we then show that test positivity and testing volume alone can be used
to estimate prevalence heuristically with reasonable accuracy in all 15 geographic regions. This learning
provides a bridge to better understand the meaning of readily available statistics when complex modeling
is not available.

Taken as a whole, this report is primarily a methodological step forward, presenting a statistical
inference approach that works in concert with our transmission models to increase detail in our situational
awareness. Going forward, it puts us in a position to ask scientific and epidemiological questions that we
plan to pursue in subsequent work.

2 Key inputs, assumptions, and limitations
Our modeling approach relies heavily on particular data sources and assumptions, which in turn lead to a
number of important limitations. Specifically:

• We use COVID-19 testing, hospitalization, and mortality data collected by the Washington Depart-
ment of Health (WA DoH) through the Washington Disease Reporting System (WDRS), compiled
for this report on December 13. Testing data is aggregated into time series by specimen collection
date and mortality data is aggregated by the date of death. To hedge against reporting delays,
we use data up to December 4 for transmission model fitting and through December 6 for weekly
sub-population estimates.

• Hospital admissions are used a proxy for severe infections, and we aggregate hospital admissions
by admission date. Furthermore, 1054 of Washington’s COVID-19 deaths (less than 10% of
total hospital admissions distributed relatively uniformly over time) were not recorded as hospital
admissions in the WDRS. Those are added by specimen collection date to the hospital admission
time series throughout this report.

• We fit a compartmental transmission model to the data for the whole state, using the method
described in detail in our previous technical report. Key assumptions from that report are applicable
here as well. One critical change worth highlighting is that we are now using the age-dependent
infection-fatality-ratio estimates published by the CDC instead of the more dated estimates based
on data from China which we were using previously.

• We assume that treatment effects have improved outcomes in hospitals and lowered the overall
infection-fatality-ratio since March by ∼ 30% as of November. This effect size comes from a separate
survival analysis described here.

• Infections in the model are distributed across Washington into groups we chose based on agricultural
divisions in eastern Washington and natural resource divisions in western Washington. This is an
arbitrary choice, not informed by the epidemiological data in any way. That said, as we continue to
learn, the method we use in this report can help us assess the value of different sub-state groupings.

• The sub-state modeling we present requires spatial information, which we have for 99% of cases,
hospitalizations, and deaths but only 89% of negative tests. Since our sub-state and age-structured
models are fit to hospitalizations, missing negatives do not affect outputs. However, in computing
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other measures of COVID-19 activity, like test positivity, our estimates are biased upwards — a
test positivity measure reported as 4% may be closer to 4 × 0.89 = 3.5% if complete data were
available. We are currently exploring methods to correct this bias more systematically, but as it
is, our estimates of total test volume are in-line with the WA DoH estimates. Dashboards from
individual counties may have more complete local information, leading to relatively lower estimates
of test positivity.

• Our approach assumes that COVID-19 prevalence varies continuously in time, an assumption that
necessarily breaks at high enough spatial and temporal resolution, where it is possible to have zero
infections and thus non-continuous dynamics between importations. While we can articulate the
problem at extremes (consider for example attempting to estimate hourly prevalence in a single
household), we are not yet able to quantify our resolution limitations in general. In sensitivity tests
of our approach, this issue was particularly apparent in small groups with sudden spikes in cases in
young people (e.g. at a university) and no associated severe outcomes. To avoid this issue, we’ve
been conservative about the number of groups across which burden is allocated, and we’ve tested
the consistency of our estimates with observed data not used for fitting. That said, we will continue
to work towards a more quantitative understanding of this issue.

3 Modeling approach
We fit a COVID-specific transmission model to daily testing, hospitalization, and mortality data at the
state level. The key modeling assumption is that individuals can be grouped into one of four disease
states: susceptible, exposed (latent) but non-infectious, infectious, and recovered. In addition, we assume:

• COVID-19 has a latent period that lasts about 5 days during which infected people are not yet
capable of transmission. The choice of a 5-day latent period implicitly assumes that people become
infectious on average roughly 1 day before the typical 6-day asymptomatic period ends. After the
latent period, we assume that those exposed to COVID-19 are infectious for about 4 days. Note
that this represents a change from our previous report, where we assumed that the latent and
infectious periods were 4 and 8 days respectively. This change was motivated by tests of model
fitting discussed in Appendix A.

• In the model, COVID-19 is introduced to Washington by an unknown number of infectious
individuals on January 15 and February 1. On all other days, we assume that local transmission
within Washington is the dominant infection route.

We use a multi-step approach to fit the state-level transmission model, described in detail previously. Once
fitted, the model gives us estimates of Washington’s infectious population every day and the probability of
hospitalization as a function of age. These two estimates are then consumed by our inferential approach.
First, using the method described in Appendix C of our previous report, group-specific weekly probabilities
of hospitalization are estimated using each group’s weekly age distribution of positive COVID-19 tests
combined with each group’s census age distribution and the state-wide estimate of the IHR by age. Then,
we estimate the weekly distribution of COVID-19 burden that best explains observed hospital admissions
in each group, ensuring that the distribution sums to 1 at all times. This distribution is used to allocate
active infections to each group every week to estimate group prevalence and is used to allocate exposures
which are summed to estimate cumulative incidence. For more details, see Appendix B below.

4 Estimating overall COVID-19 prevalence in Washington state
Estimates from the state-level transmission model are shown in Figure 1. In the top three panels, fits
(95% interval shaded) to daily positive tests (left), hospital admissions (middle), and deaths (right) show
that the model captures state-level trends in essentially all the data (black dots) we have. One of the
model’s key outputs is the total number of people in Washington actively infected with COVID-19 every
day, so-called population prevalence. In the lower panel, the model estimate of underlying population
prevalence consistent with the data in Washington shows three distinct waves in the spring, summer,
and fall. Alarmingly, we find that recent population prevalence is likely higher than it’s ever been and
continuing to trend upwards in early December. While the rate of growth slowed in mid-November,
concordant with restrictions imposed by the state on November 16, we estimate that transmission rates
increased over the Thanksgiving holiday leading to more pronounced rises in prevalence recently.
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Figure 1: Transmission model for Washington. (Top panels) Using the approach described in our previous
report, we construct a COVID-19 transmission model (curves, 95% interval shaded) consistent with observed
trends in daily positives tests (black dots, left), hospital admissions (black dots, middle), and deaths (black
dots, right). (Bottom) In constructing this model, we estimate the daily number of infections responsible for the
observed trends. In Washington, this exposes three distinct waves in the spring, summer, and fall.

In fitting the model, we take as input the CDC estimates of the infection-fatality-ratio (IFR) and
published estimates of the infection-hospitalization-ratio (IHR) by age. The latter distribution is scaled
by an overall factor to account for local hospital admission criteria; this factor is determined by best
fit to the hospitalization time series. As a result, in fitting the transmission model, we also calculate
Washington-specific estimates of the proportion of infections that become severe enough to be hospitalized.
For the model in Figure 1, we estimate that the all-time, all-age average IHR is 2.73% (95% interval:
2.17% to 3.29%) with an age distribution directly proportional to our published input by assumption. In
other words, we estimate that in Washington nearly 1 in 36 people infected with COVID-19 get admitted
to the hospital.

5 Distributing infections to capture geographic trends
The model in Figure 1 reconciles data at the state level and offers a relatively coarse picture of the
epidemic in Washington. However, given an estimate of the total number of infected people every day
and the probability of severe infection as a function of age, we can increase detail in our estimates by
allocating burden to best explain observed severe infections in sub-populations.

The approach we have developed is very general, and it could be applied to any type of grouping for
which we can assign observations (see Section 8 for an example). For now, we split Washington into 15
regions, shown in Figure 2, with color associated with western Washington (purples), the Puget Sound
area (blues), central Washington (oranges), and eastern Washington (yellows). Critically for public health
practice, group size need not be evenly distributed, and in this case population in the groups ranges from
roughly 100,000 in the Columbia Basin to 1.3 million in north King County.

As described in the appendix, burden allocation is framed as a statistical inference problem, leveraging
an assumption that sub-population prevalence varies continuously in time but avoiding assumptions
regarding the connections between sub-populations. We visually verify that the model (colors) captures
observed trends in weekly hospital admissions (black dots) in Figure 3. Across groups, despite the wide
range in group populations, the model captures all 15 observed trends accurately (overall R2 = 0.92). For
additional tests of the model’s fit, see Appendix C.
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Figure 2: Grouped counties in Washington. We created 15 sub-state groups of counties, loosely divided by color
(blue for the Puget Sound area, purple for the west, orange for the center, and yellow for the east). Groups were
chosen based on agricultural divisions in eastern and central Washington and based on natural resource divisions
for western Washington.

Figure 3: Fits to observed weekly hospital admissions. In all 15 groups, the model estimates (curves, 95% CI
shaded) capture the weekly trend in hospital admissions (black dots). Visualized together, the models expose
both the variety of trends in Washington and that inference appropriately handles disparity in group populations.
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Figure 4: Prevalence estimates across Washington. Overall, different pockets of Washington have had significantly
different prevalence time courses. Most recently, all regions show dramatic transmission increases throughout
October. To lend confidence to these estimates, we’ve overlaid prevalence estimates from our transmission model
(black dashed lines, mean and 95% interval) in regions where we’ve published estimates in the past.

6 Washington’s COVID waves have so far come in three flavors
Estimating the weekly distribution of COVID-19 infections consistent with observed hospital admissions
gives us each group’s population prevalence automatically. This is shown in Figure 4.

Overall, Figure 4’s most striking feature is the diversity of estimated trends. We find that Washington’s
first COVID-19 wave was disproportionately concentrated in King and Snohomish counties, as we would
have expected based on where COVID-19 was first found in the state. The second wave was largely
concentrated in Washington’s agricultural belt, with south central, north central, the Columbia basin,
and the Tri-Cities area hardest hit during cherry season. Finally, in the fall, rises have been prominent in
every region, making this the first wave widely distributed across the state as a whole.

A number of more specific features stand out. In particular:

• Within King County, all 3 waves have disproportionately affected south King County relative to
north King County.

• North Salish, the peninsula, and Kitsap County have generally been underrepresented throughout
the pandemic.

• Clark County, Thurston County, and the Eastern region were fortunate to avoid a large spring-
time wave, but have otherwise had continued transmission from the summer throughout the fall.
Summertime mitigation efforts were least successful in these regions.

• In Snohomish, Pierce, the Tri-Cities area, and south central region, areas where we’ve previously
published estimates based on our transmission model, we’ve overlaid those estimates on Figure 4
(black dashed lines). Generally speaking, our new approach recapitulates our previous estimates
but with increased confidence. It is noteworthy, however, that in south central region, there is a
pronounced shift in the summer peak, powered by pooled information across the state.

• Finally, early December trends are highly uncertain across the state. While in some regions (north
King, eastern, and south central), mid-November deceleration and resulting slowed growth into
December is likely, in other regions (Clark, Thurston, south western, and north central), the data
remains consistent with rapidly growing prevalence throughout the fall.

Accumulating exposures over time allows us to calculate the percent of each group’s population no
longer fully susceptible to COVID-19, so-called cumulative incidence. This is plotted in Figure 5. Overall,
we see that per person, eastern and central Washington (bottom row) have been hardest hit by COVID-19,
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Figure 5: Accumulated, group-level exposures to estimate the percent of the population at some point infected
with COVID-19. Eastern Washington regions (bottom row) have been harder hit per person than western
Washington regions. Overall, more than 80% of the population in each group is still fully susceptible to COVID-19.

with more than 10% of the population infected at some point in the south central region and the Tri-Cities
area. That said, taken as a whole, all groups remain at least 80% susceptible to COVID-19 and most
more than 90% susceptible. As a result, burden levels could still grow significantly if left unchecked, and
mitigation efforts are as important as ever.

7 Estimates of underlying burden clarify signal in testing data
The analysis described above uses a transmission-model-based methodology which leverages a number of
data streams (cases, hospitalizations, deaths, age) to infer underlying COVID-19 burden. Given these
estimates in Washington, we’re in a position to turn this question around and ask how informative more
readily available data is with regards to estimating prevalence. This question is highly relevant as simple
metrics based on the aggregated results of population testing are commonly used to inform decision-making
where model-informed burden estimates are not readily available. As the premier example, test positivity
(confirmed cases/total tests) has been widely used as a proxy for current burden. For example, New York
City recently used the ‘3% rule’ as a decision threshold for closing schools. Furthermore, researchers are
developing simple, algorithmic test-positivity-based heuristics for approximating underlying burden.

Overall, we find that weekly test positivity explains 77% of the variation in our weekly prevalence esti-
mates, meaning that test positivity alone is reasonably informative of underlying burden in Washington’s
geographic regions. That said, the relationship between test positivity and underlying burden is modified
both by the volume of testing done and the reporting rate (cases/true infections). Reporting rate is an
unobserved quantity, but is highly correlated with testing volume, which is typically observable. Along
those lines, adding information on test volume improves the proportion of variation explained to 86%.
Figure 6 shows that the linear relationship between positivity and prevalence is different depending on
the level of testing volume in the population. For this reason, direct interpretation of test positivity as
proxy for burden is possible but serves as a coarse and potentially biased approximation. We plan to
investigate these findings, and their generalizability, in a forthcoming report.

8 The same statistical principles can be applied to age groups
So far we have focused on estimating COVID-19 burden in spatial groups; however, the method we have
developed is purposefully agnostic to the connections between groups, and that allows us to apply the
same principles more widely. Primarily as a methodological demonstration, we reapply the method to
age groups in this section.
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Figure 6: Estimated weekly prevalence (with uncertainty suppressed for clarity), as a function of test positivity,
stratified by testing volume (weekly tests per 1000 population). Each point is a group-week. Test positivity is a
reliable linear predictor of prevalence, but the relationship varies with testing volume.

Figure 7: Applying our approach to age groups in Washington. Allocating COVID-19 burden from the state-level
model to these 5 age groups, accounting for the differences in the probability of hospital admission given infection
(bars), leads to age-structured inferences (colors, 95% CI shaded) that capture observed, weekly hospitalizations
(black dots) since March with an all-age R2 = 0.99.
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Figure 8: Age-structured prevalence estimates in Washington. Compared to the geographic estimates, there is
significantly less heterogeneity across age groups, with each group’s estimated prevalence time course showing 3
distinct waves. This suggests that once COVID-19 is established in a particular location, transmission is widely
age-distributed.

As before, starting with the state-level prevalence and IHR age distribution estimated in section 4, we
allocate burden to five age bins in proportion to observed hospital admissions in Figure 7 accounting for
the age dependence of COVID-19 severity. The model captures weekly trends in admissions (R2 = 0.99)
despite the non-uniform bin sizes and the dramatic differences in bin-specific IHR.

Weekly, age-distributed COVID-19 prevalence is shown in Figure 8. Overall, unlike the spatial
groupings, we see significantly less diversity in trends, and each age group has a pronounced three-wave
structure. As a result, comparison of the two sub-state groupings suggests that COVID-19 has taken
time to spread geographically while being widely age distributed once established.

That said, the age-distributed prevalence estimates highlight a number of epidemiological features:

• Since the summer wave, 18- to 24-year-olds have had the highest prevalence of the age groups
considered. While summertime mitigation efforts were successful in this group, the autumn rise has
been the fastest of the age groups.

• While the first wave disproportionately affected children under 18, this age group has been under-
represented since. The high prevalence in the first wave is particularly striking since it isn’t clearly
reflected by observed hospitalizations at that time (see Figure 7), suggesting that 2 to 3 severe
infections in children per week may have been misdiagnosed early on. The model arrives at this
estimate based on observed hospitalizations in other age-groups and the enforced consistency with
the state-level model.

• Prevalence in 25- to 39-year-olds and in 40- to 59-year-olds has been largely consistent throughout
the pandemic.

• Adults over 60 were dramatically under-represented in the summer wave, but prevalence has
unfortunately rebounded in this group in the fall.

9 Conclusions
The prevalence models in this report enrich our understanding of Washington’s COVID-19 epidemic by
providing quantitative insight into something we can’t see — prevalence and incidence that describe how
infections are distributed in our community over time — based on information we can see like cases,
hospitalizations, deaths, and the scientific literature. The technical advance in this report provides a
flexible workflow to sharpen transmission modeling’s resolution, and the workflow facilitates asking new
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scientific questions. This report’s key insight is that it’s useful to pool evidence across large regions
to get precise estimates of how many people are infected and then distribute those estimates across
sub-regions in proportion to the most comparable and reliable local data to infer heterogeneity (in
this case, hospitalization). On spatial inference, estimates in low population density regions are now
statistically stable and precision is improved in the higher density regions we’ve modeled before. And
because the method is one of accounting, not population structure, it is easy to ask new questions, as
demonstrated by the analysis of prevalence by age which indicates for example that children must’ve
been frequently infected in the first wave despite low rates of testing in that age group.

Prevalence estimates are also useful for putting other questions in context. For example, we showed
that the fraction of tests positive for COVID-19 is generally proportional to the prevalence, but that the
exact numerical relationship varies with testing volume. From this, we can conclude that in Washington,
it is reasonable to look at trends in test positivity as evidence of changes in transmission, and that
increases in test positivity do not necessarily imply that case ascertainment rates are falling. That said,
one should be careful about comparing test positivity across populations with differences in testing rates
and policies — the trend in positivity is meaningful but not necessarily the level of positivity.

Our estimates of cumulative incidence show considerable variation across the state, but they are
nowhere higher than at most 20%. Thus, nearly a year after COVID-19 first arrived in our state, the
majority of the population in every geographic region studied here is still susceptible to infection. This
estimate reflects successes in our ability to control COVID-19 through non-pharmaceutical interventions,
reveals the still-huge need for vaccination to eventually end this pandemic, and quantifies the catastrophic
risk COVID-19 continues to pose if we do not maintain control until then.

The heterogeneity among sub-groups is also informative about variations in control. All spatial regions
studied show periods of increasing and declining prevalence, but the details vary in important ways. The
south central region of the state, including Yakima County, experienced the largest per-capita outbreak
through the harvest season but had squashed it to nearer zero than most other places since March, before
starting to lose control again. In contrast, the Olympic peninsula region has never really maintained
control of COVID transmission, but has also not yet had an explosive region-wide outbreak. This likely
reflects the regions advantages of low population density and reduced mixing.

We are continuing to refine and better understand our COVID-19 models, and this report’s primary
goal is to describe new and updated methods we have developed to make more detailed epidemiological
inferences. Going forward, higher resolution prevalence estimation will be a routine part of our situational
awareness support for Washington’s Department of Health. Moreover, these detailed estimates will put us
in a position to better understand societal connections relevant to COVID-19 transmission and associated
ways for public health to better address Washington’s needs.

A Estimating state-level COVID-19 prevalence
We use the following SEIR model:

St = St−1 − βtSt−1 (It−1 + zt−1) εt

Et = βtSt−1 (It−1 + zt−1) εt + (1− 1/DE)Et−1

It = Et−1/DE + (1− 1/DI) It−1

Ct ∼ Binomial {It, pt}
Ht+dH

∼ Binomial {βtSt−1It−1εt, αIHRt}
Ft+dF

∼ Binomial {βtSt−1It−1εt, IFRt}

(1)

where St, It, and Et are the number of people who are susceptible, infected, and exposed at time t,
ln(εt) has a zero-mean normal distribution with variance σ2

t , βt is daily COVID-19 transmission rate, DE

and DI are the latent and infectious duration respectively, and zt is non-zero only on January 15 and
February 1. This model has three observation processes. Specifically, Ct are daily observed COVID-19
cases with daily case detection rate, pt, assumed to have step-wise structure in time with independent
values in prespecified reporting periods and a correction for relaxed testing on weekends. Meanwhile,
hospitalizations, Ht, and fatalities, Ft, are computed with time-varying IHR and IFR based on published
age distributions of the probability of severe outcomes, accounting for the time from exposure to outcome,
dH and dF respectively.

As described in detail in our previous technical report, we fit the model to data hierarchically. First,
ln(βt) and σ2

t are estimated using an epidemiological curve based on WDRS hospitalizations and cases.
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Figure 9: COVID-19 survival given hospital admission. Subsetting the WDRS hospitalization data by admission
month and computing Kaplan-Meier survival curves gives us estimates of the raw, monthly survival probability
(black, 95% CI in grey) given hospital admission. In our transmission model, we can compute a comparable
estimate using our inferred IHR and IFR over time (i.e. the survival probability is 1−IFR/IHR). With treatment
effects incorporated and accounting for variation in the age distribution of the infected population using the
method of our previous report, we capture the overall trend in survival while simultaneously fitting the daily
timeseries data at the state level (see Figure 1).

This curve is assumed to be proportional to the underlying infectious population. Then, observed mortality
is used to infer the number of importations, zt, conditional on an infection-fatality-ratio estimate, ln(βt),
σ2
t , and the assumption that importation timing is known. Finally, the daily reporting rate, pt, is specified

by minimizing the L2 discrepancy between the model’s infectious population estimate and observed daily
COVID-19 positives in each reporting period with an adjustment for weekends. Similarly, the overall scale
factor for the IHR by age distribution, α, which models location-specific hospital admission practices, is
determined by best fit between the model’s average hospitalization estimate and the observed time series.

In this report, we introduce four adjustments to this overall approach:

1. Unlike our previous reports, where we used age-distributed IFR estimates based on data from Asia,
we’ve switched to using the CDC’s published estimates. These estimates are used in the same
way as before, accounting for shifts in the age distribution of cases via the method described in
Appendix C of our previous report.

2. We additionally use a Cox proportional hazard model to quantify the effects that advances in
treatment have had on COVID-19 mortality rates over time. This approach is described in detail
in our associated report. Briefly, we apply the survival model to hospital admissions to estimate
monthly hazard ratios accounting for sex, comorbidities, and age. Overall, we find that treatment
advances have lowered the average IFR by ∼ 30% relative to March as of November. Monthly
hazard ratios are applied directly to the age-adjusted IFR over time to incorporate this effect, and
we find that the transmission model captures the observed survival probability accurately (see
Figure 9) while simultaneously fitting the time series data.

3. In our previous report, we described an inference approach blending hospitalization data at long
time scales with COVID-19 positives at short time scales to create the epidemiological curve upon
which model fitting is based. We continue to use this method; however, the input hospitalization
data is weighted by the age-adjusted IHR over time relative to the expected IHR based on the
census age distribution. This better accounts for variation in the relative probability of observing a
hospitalization on a given day.

4. Finally, we have changed DE from 4 to 5 days and DI from 8 to 4 days. This change was based
on the grid-search of model fits to observed hospitalizations shown in Figure 10. Overall, we find
compelling evidence that models with comparable DE and DI outperform models with pronounced
duration differences. Weighing the results of this brute-force approach with published viral load
studies and the CDC estimate that the mean time from exposure to symptom onset is 6 days, we
selected the best performing model with DE = 5 days (to account for 1 day of pre-symptomatic
transmission, as before). We tested these new durations in other settings, namely in King County,
Snohomish County, Pierce County, and the Tri-Cities and south central regions (see Figure 2).
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Figure 10: Testing the transmission model’s response to variation in DE and DI . State-level transmission
models were fit conditional on different DE and DI pairs (dots) to compare goodness of fit to the observed
hospitalization times series as a function of the latent and infectious duration (colors). Overall, we find that
models with DE ∼ DI outperform models with large duration differences.

Overall, we found that the DE = 5 and DI = 4 model was generally the highest performing choice
with DE consistent with the literature (i.e. fixed at 5 days).

B An intuitive approach for allocating the transmission model’s
infections to sub-populations

The fitted transmission model in the previous section gives us an overall estimate of the infected population
in a region that we assume is large enough to sustain uninterrupted community transmission and therefore
be considered in isolation. While the fitted transmission model captures observed trends in cases,
hospitalizations, and mortality at the region level, it averages over significant heterogeneity among
sub-populations.

This report presents a simple way to estimate COVID-19 burden in sub-populations given a fitted
model for the full population. Succinctly, we allocate infections to groups in proportion to observed
severe outcomes over time, taking care to ensure that the total number of infections in the population is
consistent with the overall transmission model. Here, we describe this process in mathematical detail.

We are given data hgt , the number of hospitalizations observed in group g at time t, and we assume
that both the total number of infections at time t, It, and the probability of severe outcomes for group g
at time t, pgt are known. We model the distribution of infections across groups at time t as s(~θt), where
~θt is a vector of random walks for each group at time t and s(·) is the soft-max function ensuring that
the distribution sums to 1 at all times. Our goal is to estimate random walks θgt for groups g = 1, ..., G
and times t = 1, ..., T .
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To get started, consider ~θt at a specific time. The posterior distribution

p(~θt|~ht, It, ~pt) ∝ p(~ht|It, ~θt, ~pt)p(~θt|It, ~pt)

=

∫
dI1t ...dI

G
t p(

~ht|~It, ~pt)p(~It|~θt, It)p(~θt|It, ~pt), (2)

where in the second line we’ve introduced group specific infections, Igt , and made some sensible conditional
independence assumptions (that hgt is independent of θgt given Igt for example). Note that all vector
valued quantities represent the relevant collections over groups and have length G. As we mentioned
above, we model

p(~It|~θt, It) =
∏
g

δ(Igt − s(~θt)gIt),

and we further assume that
p(hgt |I

g
t , p

g
t ) = Binom {hgt |I

g
t , p

g
t } .

Thus, given Igt and pgt , h
g
t is conditionally independent of observed hospitalizations at all other times and

in all other groups. Collecting terms over time and taking the integrals gives

p(Θ|H, It,P) = p(Θ)
∏
g,t

Binom
{
hgt |s(~θt)gIt, p

g
t

}
(3)

where bold, capital letters represent T ×G matrices of the associated quantities. The prior p(Θ) is the
product of the priors over time in Eq. 2. As mentioned, we model Θ as a collection of G random walks
in time, implying that

p(Θ) ∝ exp

{
−1

2
Tr[ΘTΛΘ]

}
,

where Tr[ΘTΛΘ] is the finite-difference approximation to the total variation in each group’s random
walk, and Λ is scaled such that the expected value of each random walk’s total variation is that of a sine
wave with period τ . Taken together with Eq. 3, we have a fully specified posterior distribution for Θ
which can be used for Bayesian inference.

There are a few additional practical considerations worth highlighting for completeness.

• First, we use the transmission model’s expected value for It to then compute Θ∗, the parameters
that maximize Eq. 3, and an associated covariance matrix. This gives us a Gaussian approximation
to the posterior distribution which we can sample to more completely propagate the transmission
model’s uncertainty in It to individual estimates at the group level.

• Second, the soft-max function is degenerate in the sense that s(~θt) = s(~θt +c) where c is an arbitrary
constant added to ~θt element-wise. To stabilize the optimization, we set θGt = 0 for all t so that
other group’s random walks can be interpreted relative to group G and the posterior distribution
has a unique maximum. In testing the approach, we found that results were insensitive to the group
chosen as the baseline.

• Third, throughout the report, we set τ = 6 weeks. This was chosen by testing values between 2 and
10 weeks and selecting the value with the highest posterior probability and sharpest posterior mode.
In testing however, we found that the results were generally similar across reasonable choices for τ .

• Finally, optimization is carried out using scipy’s implementation of BFGS to minimize the negative
log posterior. This process is assisted by analytically computing the gradient of ln p(Θ|H, It,P)
with respect to Θ, which we found dramatically increases speed and stability relative to optimization
using finite-difference approximations to the gradient. To be transparent, with L ≡ ln p(Θ|H, It,P),
we calculate

∂L

∂θgt
=(−2ΛΘ)gt +

[
ψ(s(~θt)

gIt + 1)− ψ(s(~θt)
gIt − hgt + 1) + ln(1− pgt )

]
s(~θt)

gIt

− s(~θt)gIt
∑
g′

[
ψ(s(~θt)

g′
It + 1)− ψ(s(~θt)

g′
It − hg

′

t + 1) + ln(1− pg
′

t )
]
s(~θt)

g′
,

for all t and g where ψ is the digamma function.
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Figure 11: Four high-level tests of model performance. (Top row) The model captures cumulative, observed
hospitalizations and mortality across geographic regions (colors as per Fig. 2, 2 standard deviation error bars),
despite being fit to hospitalizations alone. (Bottom row) Model-based cumulative incidence estimates are highly
correlated to mortality per 100k (Pearson correlation 0.91) and positives per 1k (Pearson correlation 0.97), two
additional correlates of COVID-19 burden.

One final note: A critical feature of this approach is that it is agnostic to how groups are defined. For
example, while we concentrate on spatial collections above, at no point in the above analysis do we
leverage spatial correlation (which could be included in Λ if we needed). This facilitates application of the
same method to age groups in section 8, and we could in principle apply this approach to groups defined
in any way as long as we have the associated data on hospital admissions. While we do not explore that
idea at length here, we plan to do so in the future.

C Additional tests of our geographic estimates
In the main text, we show that the model estimates capture observed trends in weekly hospital admissions
(Figure 3). Here we further test the approach’s cumulative estimates.

Figure 11 shows four such tests. In the top two panels, model-based estimates of total hospitalizations
and total deaths (colors as per Figure 2, 2 standard deviation error bars) are compared to observations,
and in both cases, the estimates capture the distribution across the state. In the bottom two panels,
model-based cumulative incidence estimates are compared to data-based correlates of COVID-19 burden,
namely deaths per 100k population and positive tests per 1k population. Our cumulative incidence
estimates are highly correlated to these measures that were not used for model fitting, increasing our
confidence in our estimates overall.
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